https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The East Asian Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1500 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
QS World University Rankings 2024: Top global universities
The 20th edition of the QS World University Rankings features 1,500 institutions across 104 locations and is the only ranking of its kind to emphasise employability and sustainability. This year, they have implemented the largest-ever methodological enhancement, introducing three new metrics: Sustainability, Employment Outcomes and International Research Network.
The results draw on the analysis of 17.5m academic papers and the expert opinions of over 240,000 academic faculty and employers. Massachusetts Institute of Technology celebrates twelve years at the top, the University of Cambridge retains 2nd place while the University of Oxford (3rd) climbs one position.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The African Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1500 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The South Asian Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1500 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The East Asian Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1500 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle: