2 datasets found
  1. Global contemporary effective population sizes across taxonomic groups

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Dalhousie University
    Concordia University
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

  2. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +3more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
Organization logo

Global contemporary effective population sizes across taxonomic groups

Explore at:
zipAvailable download formats
Dataset updated
May 3, 2024
Dataset provided by
Dalhousie University
Concordia University
Authors
Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

Search
Clear search
Close search
Google apps
Main menu