Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Spanish(Spain) Spontaneous Dialogue Telephony speech dataset, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(600 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.For more details, please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1234?source=Kaggle
8kHz 8bit, a-law/u-law pcm, mono channel
Dialogue based on given topics
Low background noise (indoor)
Telephony
Spain(ESP)
es-ES
Spanish
600 people in total, 49% male and 51% female
Transcription text, timestamp, speaker ID, gender
Word accuracy rate(WAR) 98%
Commercial License
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mexican Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mexican Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Mexican accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mexican Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Dataset comprises 488 hours of telephone dialogues in Spanish, collected from 600 native speakers across various topics and domains. This dataset boasts an impressive 98% word accuracy rate, making it a valuable resource for advancing speech recognition technology.
By utilizing this dataset, researchers and developers can advance their understanding and capabilities in automatic speech recognition (ASR) systems, transcribing audio, and natural language processing (NLP). - Get the data
The dataset includes high-quality audio recordings with text transcriptions, making it ideal for training and evaluating speech recognition models.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2Fa3f375fb273dcad3fe17403bdfccb63b%2Fssssssssss.PNG?generation=1739884059328284&alt=media" alt="">
- Audio files: High-quality recordings in WAV format
- Text transcriptions: Accurate and detailed transcripts for each audio segment
- Speaker information: Metadata on native speakers, including gender and etc
- Topics: Diverse domains such as general conversations, business and etc
This dataset is a valuable resource for researchers and developers working on speech recognition, language models, and speech technology.
Facebook
TwitterThis dataset contains 388 hours of English speech from Spanish speakers, collected from monologue based on given scripts, covering generic domain, human-machine interaction, smart home command and in-car command, numbers and other domains. Transcribed with text content and other attributes. Our dataset was collected from extensive and diversify speakers(891 people in total), geographicly speaking, enhancing model performance in real and complex tasks.Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Colombian Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Colombian Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Colombian accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Colombian Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
Facebook
TwitterLanguages:Percent Spanish Speakers: Basic demographics by census tracts in King County based on current American Community Survey 5 Year Average (ACS). Included demographics are: total population; foreign born; median household income; English language proficiency; languages spoken; race and ethnicity; sex; and age. Numbers and derived percentages are estimates based on the current year's ACS. GEO_ID_TRT is the key field and may be used to join to other demographic Census data tables.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Spanish Telephone Dialogues Dataset - 488 Hours
Dataset comprises 488 hours of high-quality telephone audio recordings in Spanish, featuring 600 native speakers and achieving a 95% sentence accuracy rate. Designed for advancing speech recognition models and language processing, this extensive speech data corpus covers diverse topics and domains, making it ideal for training robust automatic speech recognition (ASR) systems. - Get the data
Dataset characteristics:… See the full description on the dataset page: https://huggingface.co/datasets/ud-nlp/spanish-speech-recognition-dataset.
Facebook
TwitterSpanish(Mexico) Real-world Casual Conversation and Monologue speech dataset, covers self-media, conversation, variety show and other generic domains, mirrors real-world interactions. Transcribed with text content, speaker's ID, gender, and other attributes. Our dataset was collected from extensive and diversify speakers, geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data set scores Spanish language access to local and county government websites. Few data exist to support measuring the language accessibility of government websites by persons with limited English proficiency (LEP). The Worldwide Web is asserted as the great leveler, bringing citizens into closer contact with their governments and the services those governments provide. This is certainly the case with English speakers. However for individuals with limited English proficiency, the web has left many behind. The data is organized into two datasets: 1) cities and 2) counties. The city dataset is comprised of the 100 largest U.S. cities for 2012 (http://www.citymayors.com/gratis/uscities_100.html). Counties were sampled on two criteria: a) percentage of population that speaks Spanish or Spanish Creole at home and b) region. To obtain a regional distribution of counties, those with the highest percentages of population that speaks Spanish or Spanish Creole at home were sampled within each of four Census regions: Northeast, Midwest, South, and West.
Facebook
TwitterSpanish(Latin America) Children Real-world Casual Conversation and Monologue speech dataset, covers self-media, conversation, live, lecture, variety show and other generic domains, mirrors real-world interactions. Transcribed with text content, speaker's ID, gender, age, accent and other attributes. Our dataset was collected from extensive and diversify speakers(12 years old and younger children), geographicly speaking, enhancing model performance in real and complex tasks.Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Facebook
TwitterThis data set uses the 2009-2013 American Community Survey to tabulate the number of speakers of languages spoken at home and the number of speakers of each language who speak English less than very well. These tabulations are available for the following geographies: nation; each of the 50 states, plus Washington, D.C. and Puerto Rico; counties with 100,000 or more total population and 25,000 or more speakers of languages other than English and Spanish; core-based statistical areas (metropolitan statistical areas and micropolitan statistical areas) with 100,000 or more total population and 25,000 or more speakers of languages other than English and Spanish.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Spanish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
Facebook
TwitterSpanish(Mexico) Spontaneous Dialogue Smartphone speech dataset, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(338 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.
Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.
The dataset features 30 hours of dual-channel call center recordings between native Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.
This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.
Such domain-rich variety ensures model generalization across common real estate support conversations.
All recordings are accompanied by precise, manually verified transcriptions in JSON format.
These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.
Detailed metadata accompanies each participant and conversation:
This enables smart filtering, dialect-focused model training, and structured dataset exploration.
This dataset is ideal for voice AI and NLP systems built for the real estate sector:
Facebook
Twitterhttps://data.macgence.com/terms-and-conditionshttps://data.macgence.com/terms-and-conditions
The audio dataset includes General Conversation, featuring Spanish speakers from Spain with detailed metadata.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
EpaDB
EpaDB is a speech database of 50 native Spanish speakers (25 male, 25 female) from Argentina speaking English. It contains phonemic annotations using mainly the sounds supported by ARPABet with a few extensions to model Spanish influenced dialects of English. It was developed by Jazmin Vidal, Luciana Ferrer, and Leonardo Brambilla at the Speech Lab. Read more on their official github and paper.
This Processed Version
We have processed the dataset into an easily… See the full description on the dataset page: https://huggingface.co/datasets/KoelLabs/EpaDB.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains speech samples of English, German and Spanish languages. Samples are equally balanced between languages, genders and speakers.
More information at the spoken-language-dataset repository.
The project was inspired by the TopCoder contest, Spoken Languages 2. The given dataset contains 10 second of speech recorded in 1 of 176 languages. The entire dataset has been based on bible readings. Poorly, in many cases there is a single speaker per language (male in most cases). Even worse the same single speaker exists in the test set. Of course this can't lead to a good generic solution.
There are two ways we can take:
The second approach has been taken.
LibriVox recordings were used to prepare the dataset. Particular attention was paid to a big variety of unique speakers. Big variance forces the model to concentrate more on language properties than a specific voice. Samples are equally balanced between languages, genders and speakers in order not to favour any subgroup. Finally the dataset is divided into train and test set. Speakers present in the test set, are not present in the train set. This helps estimate a generalization error.
The core of the train set is based on 420 minutes (2520 samples) of original recordings. After applying several audio transformations (pitch, speed and noise) the train set was extended to 12180 minutes (73080 samples). The test set contains 90 minutes (540 samples) of original recordings. No data augmentation has been applied.
Original recordings contain 90 unique speakers. The number of unique speakers was increased by adjusting pitch (8 different levels) and speed (8 different levels). After applying audio transformations there are 1530 unique speakers.
The dataset is divided into 2 directories:
Each sample is an FLAC audio file with:
The original recordings are MP3 files but they are converted into FLAC files quickly to avoid re-encoding (and losing quality) during transformations.
The filename of the sample has following syntax:
(language)_(gender)_(recording ID).fragment(index)[.(transformation)(index)].flac
...and variables:
en, de, or esm or fspeed, pitch or noisespeed: 1-8pitch: 1-8noise: 1-12For example:
es_m_f7d959494477e5e7e33d4666f15311c9.fragment9.speed8.flac
The dataset was used to train the spoken language identification model. The trained model has 97% score (i.e. F1 metric) against the test set. Additionally it generalizes well which was confirmed against real life content. The fact that samples are prefeclty stratified was one of the reasons to achieve such a high performance.
Feel free to create your own model and share results!
Facebook
TwitterSpanish(Spain) Scripted Monologue Smartphone speech dataset, collected from monologue based on given scripts, covering generic domain, human-machine interaction, smart home command and in-car command, numbers, news and other domains. Transcribed with text content and other attributes. Our dataset was collected from extensive and diversify speakers(989 people in total), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Format
16kHz, 16bit, uncompressed wav, mono channel;
Recording condition
Low background noise(indoor), without echo;
Content category
Generic domain; news; human-machine interaction; smart home command and control; in-car command and control; numbers
Recording device
Android Smartphone, iPhone;
Speaker
989 speakers totally, with 49% male and 51% female ; and 57% speakers of all are in the age group of 17-25,39% speakers of all are in the age group of 26-45, 4% speakers of all are in the age group of 46-60;
Country
Spain(ESP);
Language(Region) Code
es-ES;
Language
Spanish;
Features of annotation
Transcription text;
Accuracy Rate
Sentence Accuracy Rate (SAR) 95%
Facebook
TwitterSpanish(Spain) Spontaneous Dialogue Smartphone speech dataset, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(596 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Spanish(Mexico) Spontaneous Dialogue Telephony speech dataset, collected from dialogues based on given topics. Transcribed with text content, timestamp, speaker's ID, gender and other attributes. Our dataset was collected from extensive and diversify speakers(122 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied. For more details, please refer to the link:https://www.nexdata.ai/datasets/speechrecog/1352?source=Kaggle
8kHz 8bit, a-law/u-law pcm, mono channel
Dialogue based on given topics
Low background noise (indoor)
Telephony
Mexico(MEX)
es-MX
Spanish
122 people in total, 53% male and 47% female
Transcription text, timestamp, speaker ID, gender, noise
Word accuracy rate(WAR) 98%
Commercial License
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Spanish(Spain) Spontaneous Dialogue Telephony speech dataset, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(600 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.For more details, please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1234?source=Kaggle
8kHz 8bit, a-law/u-law pcm, mono channel
Dialogue based on given topics
Low background noise (indoor)
Telephony
Spain(ESP)
es-ES
Spanish
600 people in total, 49% male and 51% female
Transcription text, timestamp, speaker ID, gender
Word accuracy rate(WAR) 98%
Commercial License