The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 40 cities in the Blue Earth County, MN by Non-Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people - 5km cutoff distance"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 40 cities in the Blue Earth County, MN by Multi-Racial Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
The Asian administrative boundaries and population database is part of an ongoing effort to improve global, spatially referenced demographic data holdings. Such databases are useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This project (which has been carried out as a cooperative activity
between NCGIA, CGIAR and UNEP/GRID between Oct. 1995 and present) has
pooled available data sets, many of which had been assembled for the
global demography project. All data were checked, international
boundaries and coastlines were replaced with a standard template, the
attribute database was redesigned, and new, more reliable population
estimates for subnational units were produced for all countries. From
the resulting data sets, raster surfaces representing population
distribution and population density were created in collaboration
between NCGIA and GRID-Geneva.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. The first wave of results for sub-state geographic areas in New Mexico was reOterosed on March 15, 2011, through the Redistricting Data (PL94-171) Summary File. This batch of data covers the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, neighborhoods (census tracts and block groups), individual census blocks, and other areas. The Redistricting products provide counts by race and Hispanic ethnicity for the total population and the population 18 years and over, and housing unit counts by occupancy status. The 2010 Census Redistricting Data Summary File can be used to redraw federal, state and local legislative districts under Public Law 94-171. This is an important purpose of the file and, indeed, state officials use the Redistricting Data to realign congressional and state legislative districts in their states, taking into account population shifts since the 2000 Census. More detailed population and housing characteristics were reOterosed in the summer of 2011. The data in this particular RGIS COteroringhouse table is for all Block Groups in Otero County. The table provides total counts population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1. Contents
2. Description of this Zenodo dataset
This Zenodo dataset pertains to the full KNMI-LENTIS dataset: a large ensemble of simulations with the Global Climate Model EC-Earth3. The periods are for the present-day period (2000-2009) and a future +2K period (2075-2084 following SSP2-4.5). KNMI-LENTIS has 1600 simulated years for both the two climates. This level of sampled climate variability allows for robust and in-depth research into extreme events. The available variables are listed in the file request-overview-CMIP-historical-including-EC-EARTH-AOGCM-preferences.txt. All variables are cmorised following CMIP6 data format convention. Further details on the variables and their output dimensions is available via the following search tool. The total size of KNMI-LENTIS is 128 TB. KNMI-LENTIS is stored at the high performance storage system of the ECMWF (ECFS).
The Global Climate Model that is used for generating this Large Ensemble is EC-Earth3 - VAREX project branch https://svn.ec-earth.org/ecearth3/branches/projects/varex (access restricted to ECMWF members).
The goal of this Zenodo dataset is :
3. How KNMI-LENTIS is organised
KNMI-LENTIS consists of 2 times 160 runs of 10 years. All simulations have a unique ensemble member label that reflects the forcing, and how the initial conditions are generated. The initial conditions have two aspects: the parent simulation from which the run is branched (macro perturbation, there are 16), and the seed relating to a particular micro-perturbation in the initial three-dimensional atmosphere temperature field (there are 10). The ensemble member label thus is a combination of:
In this Zenodo dataset we publish 1 year from 1 member to give insight into the type of data and metadata that is representative of the full KNMI-LENTIS dataset. The published data is year 2000 from member h010. See Section 4
Further, all KNMI-LENTIS simulations are labeled per the CMIP6 convention of variant labelling. A variant label is made from four components: the realization index r, the initialization index i, the physics index p and the forcing index f. Further details on CMIP6 variant labelling be found in The CMIP6 Participation Guidance for Modelers. In the KNMI-LENTIS data set, the forcing is reflected in the first digit of the realization index r of the variant label. For the historical simulations, the one thousands (r1000-r1999) have been reserved. For the SSP2-4.5 the five thousands (r5000-r5999) have been reserved. The parent is reflected in the second and third digit of the realization index r of the variant label (r?01?-r?16?). The seed is reflected in the fourth digit of the realization index r: (r???0-r???9). The seed is also reflected in the initialization index i of the variant label (i0-i9), so this is double information. The physics index p5 has been reserved for the ECE3p5 version: all KNMI-LENTIS simulations have the p5 label. The forcing index f of the variant label is kept at 1 for all KNMI-LENTIS simulations. As an example, variant label r5119i9p5f1 refers to: the 2K time slice with parent 11 and randomizing seed number 9. The physics index is 5, meaning the run is done with the ECE3p5 version of EC-Earth3.
4. Where is the data deposited on the ECWMF's tape storage
In this Zenodo folder, there are several text files and several netcdf files. The text files provide
Data from KNMI-LENTIS is deposited in the ECMWF ECFS tape storage system. Data can be freely downloaded by to those who have access to the ECMWF ECFS. Else, the data can be made available by the authors upon request.
The way the dataset is organised is detailed in LENTIS_on_ECFS.zip. This contains details on all available KNMI-LENTIS files, in particular details for how these are filed in ECFS. The files on ECFS are tar zipped per ensemble member & variable: these contain 10 years of ensemble member data (10 separate netcdf files). The location on ECFS of the tar-zipped files that are listed in the various text files in this Zenodo dataset is
ec:/nklm/LENTIS/ec-earth/cmorised_by_var/
#!/bin/bash
#-------------------
# script to write out LENTIS details on ECFS
#-------------------
for freq in AERmon Amon Emon LImon Lmon Ofx Omon SImon fx Eday Oday day CFday 3hr 6hrPlev 6hrPlevPt; do
for scen in hxxx sxxx; do
els -l ec:/nklm/LENTIS/ec-earth/cmorised_by_var/${scen}/${freq}/* >> LENTIS_on_ECFS_${scen}_${freq}.txt
done
done
Further, part of the data will be made publicly available from the Earth System Grid Federation (ESGF) data portal. We aim to upload most of the monthly variables for the full ensemble. As search terms use EC-Earth for model and p5 for physical index to locate the KNMI-LENTIS data.
5. Data of all variables for 1 year for 1 ensemble member
The netcdf files of the data of 1 year from 1 member h010 are published here to give insight into the type of data and metadata that is representative of the full KNMI-LENTIS dataset. The data are in zipped folders per output frequencies: AERmon, Amon, Emon, LImon, Lmon, Ofx, Omon, SImon, fx, Eday, Oday, day, CFday, 3hr, 6hrPlev, 6hrPlevPt. The text file request-overview-CMIP-historical-including-EC-EARTH-AOGCM-preferences.txt gives an overview of variables available per output frequency. the text files tree_of_files_one_member_all_data.txt gives an overview of the files in the zipped folders.
6. Related links
The production of the KNMI-LENTIS ensemble was funded by the KNMI (Royal Dutch Meteorological Institute) multi-year strategic research fund KNMI MSO Climate Variability And Extremes (VAREX)
GitHub repository corresponding to this Zenodo dataset: https://github.com/lmuntjewerf/KNMI-LENTIS_dataset_description.git
Github repository for KNMI-LENTIS production code: https://github.com/lmuntjewerf/KNMI-LENTIS_production_script_train.git
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. The first wave of results for sub-state geographic areas in New Mexico was reSan Miguelsed on March 15, 2011, through the Redistricting Data (PL94-171) Summary File. This batch of data covers the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, neighborhoods (census tracts and block groups), individual census blocks, and other areas. The Redistricting products provide counts by race and Hispanic ethnicity for the total population and the population 18 years and over, and housing unit counts by occupancy status. The 2010 Census Redistricting Data Summary File can be used to redraw federal, state and local legislative districts under Public Law 94-171. This is an important purpose of the file and, indeed, state officials use the Redistricting Data to realign congressional and state legislative districts in their states, taking into account population shifts since the 2000 Census. More detailed population and housing characteristics were reSan Miguelsed in the summer of 2011. The data in this particular RGIS CSan Miguelringhouse table is for all Block Groups in San Miguel County. The table provides total counts population.
See "01_ASDN_readme.txt" (under "Download Data" tab) for data author and contact information. Field data on shorebird ecology and environmental conditions were collected from 1993-2014 at 16 field sites in Alaska, Canada, and Russia. Data were not collected in every year at all sites. Studies of the population ecology of these birds included nest-monitoring to determine timing of reproduction and reproductive success; live capture of birds to collect blood samples, feathers, and fecal samples for investigations of population structure and pathogens; banding of birds to determine annual survival rates; resighting of color-banded birds to determine space use and site fidelity; and use of light-sensitive geolocators to investigate migratory movements. Data on climatic conditions, prey abundance, and predators were also collected. Environmental data included weather stations that recorded daily climatic conditions, surveys of seasonal snowmelt, weekly sampling of terrestrial and aquatic invertebrates that are prey of shorebirds, live trapping of small mammals (alternate prey for shorebird predators), and daily counts of potential predators (jaegers, falcons, foxes). Detailed field methods for each year are available in the ASDN_protocol_201X.pdf files. All research was conducted under permits from relevant federal, state and university authorities. Potential users of these data should first contact the relevant data author(s), listed below. This will enable coordination in terms of updates/corrections to the data and ongoing analyses. Key analyses of the data are in progress and will be included in the theses and dissertations of graduate students who collected these field data. Please acknowledge this dataset and the authors in any analysis, publication, presentation, or other output that uses these data. If you use the full dataset, we suggest you cite it as: Lanctot, RB, SC Brown, and BK Sandercock. 2016. Arctic Shorebird Demographics Network. NSF Arctic Data Center. doi: INSERT HERE. If you use data from only one or a few sites, we suggest you cite data for each site as per this example, using the corresponding site PIs as the authors: Lanctot, RB and ST Saalfeld. 2016. Barrow, 2014. Arctic Shorebird Demographics Network. NSF Arctic Data Center. doi: INSERT HERE. Note that each updated version of the full dataset has its own unique DOI. Disclaimers: The dataset is distributed “as is” and with absolutely no warranty. The data providers have invested considerable effort to ensure that the data are of highest quality, but it is possible that undetected errors remain. Data have been processed with several steps for quality assurance, but the data providers accept no liability or guarantee that the data are up-to-date, correct, or complete. Access to data is provided on the understanding that the data providers are not responsible for any damages from inaccuracies in the data. Note: An up-to-date version of data from Barrow/Utqiagvik, including corrected and more recent data, is now housed here: https://arcticdata.io/catalog/view/doi:10.18739/A2VT1GP7Q . Please contact the relevant site PIs to seek recent data (after 2014) from any other site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong HK: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 10.328 % in 2010. This records a decrease from the previous number of 10.348 % for 2000. Hong Kong HK: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 10.348 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 10.461 % in 1990 and a record low of 10.328 % in 2010. Hong Kong HK: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong SAR – Table HK.World Bank.WDI: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 40 cities in the Blue Earth County, MN by Multi-Racial Native Hawaiian and Other Pacific Islander (NHPI) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.