Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.700 % in 2021. This records an increase from the previous number of 11.500 % for 2020. United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 11.600 % from Dec 1968 (Median) to 2021, with 54 observations. The data reached an all-time high of 13.700 % in 1993 and a record low of 4.500 % in 1968. United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom UK: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data was reported at 0.700 % in 2015. This records an increase from the previous number of 0.500 % for 2014. United Kingdom UK: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data is updated yearly, averaging 0.700 % from Dec 2004 (Median) to 2015, with 12 observations. The data reached an all-time high of 1.200 % in 2004 and a record low of 0.400 % in 2012. United Kingdom UK: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s UK – Table UK.World Bank: Poverty. Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. The aggregated numbers for low- and middle-income countries correspond to the totals of 6 regions in PovcalNet, which include low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia). See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Out of all OECD countries, Cost Rica had the highest poverty rate as of 2022, at over 20 percent. The country with the second highest poverty rate was the United States, with 18 percent. On the other end of the scale, Czechia had the lowest poverty rate at 6.4 percent, followed by Denmark.
The significance of the OECD
The OECD, or the Organisation for Economic Co-operation and Development, was founded in 1948 and is made up of 38 member countries. It seeks to improve the economic and social well-being of countries and their populations. The OECD looks at issues that impact people’s everyday lives and proposes policies that can help to improve the quality of life.
Poverty in the United States
In 2022, there were nearly 38 million people living below the poverty line in the U.S.. About one fourth of the Native American population lived in poverty in 2022, the most out of any ethnicity. In addition, the rate was higher among young women than young men. It is clear that poverty in the United States is a complex, multi-faceted issue that affects millions of people and is even more complex to solve.
Multidimensional Poverty Index (MPI): countries where the MPI is below 0.6. Pixels with a value lower than the specified threshold (0.6) were given a value of 1 (YES response)
The 2020 Global MPI data and publication "Charting pathways out of multidimensional poverty: Achieving the SDGs" released on 16 July 2020 by the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford and the Human Development Report Office of the United Nations Development Programme (UNDP). The global MPI measures the complexities of poor people’s lives, individually and collectively, each year. This report focuses on how multidimensional poverty has declined. It provides a comprehensive picture of global trends in multidimensional poverty, covering 5 billion people. It probes patterns between and within countries and by indicator, showcasing different ways of making progress. Together with data on the $1.90 a day poverty rate, the trends monitor global poverty in different forms.
Data revision: 2020-07-16
Contact points:
Contact: Admir Jahic UNDP
Metadata contact: OCB Environment FAO-UN
Resource constraints:
license
Online resources:
Global Multidimensional Poverty Index
Charting pathways out of multidimensional poverty: Achieving the SDGs
The General Household Survey (GHS) is a continuous national survey of people living in private households conducted on an annual basis, by the Social Survey Division of the Office for National Statistics (ONS). The main aim of the survey is to collect data on a range of core topics, covering household, family and individual information. This information is used by government departments and other organisations for planning, policy and monitoring purposes, and to present a picture of house holds, family and people in Great Britain. From 2008, the General Household Survey became a module of the Integrated Household Survey (IHS). In recognition, the survey was renamed the General Lifestyle Survey (GLF/GLS). The GHS started in 1971 and has been carried out continuously since then, except for breaks in 1997-1998 when the survey was reviewed, and 1999-2000 when the survey was redeveloped. Following the 1997 review, the survey was relaunched from April 2000 with a different design. The relevant development work and the changes made are fully described in the Living in Britain report for the 2000-2001 survey. Following its review, the GHS was changed to comprise two elements: the continuous survey and extra modules, or 'trailers'. The continuous survey remained unchanged from 2000 to 2004, apart from essential adjustments to take account of, for example, changes in benefits and pensions. The GHS retained its modular structure and this allowed a number of different trailers to be included for each of those years, to a plan agreed by sponsoring government departments. Further changes to the GHS methodology from 2005: From April 1994 to 2005, the GHS was conducted on a financial year basis, with fieldwork spread evenly from April of one year to March the following year. However, in 2005 the survey period reverted to a calendar year and the whole of the annual sample was surveyed in the nine months from April to December 2005. Future surveys will run from January to December each year, hence the title date change to single year from 2005 onwards. Since the 2005 GHS (held under SN 5640) does not cover the January-March quarter, this affects annual estimates for topics which are subject to seasonal variation. To rectify this, where the questions were the same in 2005 as in 2004-2005, the final quarter of the latter survey was added (weighted in the correct proportion) to the nine months of the 2005 survey. Furthermore, in 2005, the European Union (EU) made a legal obligation (EU-SILC) for member states to collect additional statistics on income and living conditions. In addition to this the EU-SILC data cover poverty and social exclusion. These statistics are used to help plan and monitor European social policy by comparing poverty indicators and changes over time across the EU. The EU-SILC requirement has been integrated into the GHS, leading to large-scale changes in the 2005 survey questionnaire. The trailers on 'Views of your Local Area' and 'Dental Health' have been removed. Other changes have been made to many of the standard questionnaire sections, details of which may be found in the GHS 2005 documentation. Further changes to the GLF/GHS methodology from 2008 As noted above, the General Household Survey (GHS) was renamed the General Lifestyle Survey (GLF/GLS) in 2008. The sample design of the GLF/GLS is the same as the GHS before, and the questionnaire remains largely the same. The main change is that the GLF now includes the IHS core questions, which are common to all of the separate modules that together comprise the IHS. Some of these core questions are simpl y questions that were previously asked in the same or a similar format on all of the IHS component surveys (including the GLF/GLS). The core questions cover employment, smoking prevalence, general health, ethnicity, citizenship and national identity. These questions are asked by proxy if an interview is not possible with the selected respondent (that is a member of the household can answer on behalf of other respondents in the household). This is a departure from the GHS which did not ask smoking prevalence and general health questions by proxy, whereas the GLF/GLS does from 2008. For details on other changes to the GLF/GLS questionnaire, please see the GLF/GLS 2008: Special Licence Access documentation held with SN 6414. Currently, the UK Data Archive holds only the SL (and not the EUL) version of the GLF/GLS for 2008. Changes to the drinking section There have been a number of revisions to the methodology that is used to produce the alcohol consumption estimates. In 2006, the average number of units assigned to the different drink types and the assumption around the average size of a wine glass was updated, resulting in significantly increased consumption estimates. In addition to the revised method, a new question about wine glass size was included in the survey in 2008. Respondents were asked whether they have consumed small (125 ml), standard (175 ml) or large (250 ml) glasses of wine. The data from this question are used when calculating the number of units of alcohol consumed by the respondent. It is assumed that a small glass contains 1.5 units, a standard glass contains 2 units and a large glass contains 3 units. (In 2006 and 2007 it was assumed that all respondents drank from a standard 175 ml glass containing 2 units.) The datasets contain the original set of variables based on the original methodology, as well as those based on the revised and (for 2008 onwards) updated methodologies. Further details on these changes are provided in the Guidelines documents held in SN 5804 - GHS 2006; and SN 6414 - GLF/GLS 2008: Special Licence Access. Special Licence GHS/GLF/GLS Special Licence (SL) versions of the GHS/GLF/GLS are available from 1998-1999 onwards. The SL versions include all variables held in the standard 'End User Licence' (EUL) version, plus extra variables covering cigarette codes and descriptions, and some birthdate information for respondents and household members. Prospective SL users will need to complete an extra application form and demonstrate to the data owners exactly why they need access to t he extra variables, in order to get permission to use the SL version. Therefore, most users should order the EUL version of the data. In order to help users choose the correct dataset, 'Special Licence Access' has been added to the dataset titles for the SL versions of the data. A list of all GHS/GLF/GLS studies available from the UK Data Archive may be found on the GHS/GLF/GLS major studies web page. See below for details of SL datasets for the corresponding GHS/GLF/GLS year (1998-1999 onwards only). UK Data Archive data holdings and formats The UK Data Archive GHS/GLF/GLS holdings begin with the 1971 study for EUL data, and from 1998-1999 for SL versions (see above). Users should note that data for the 1971 study are currently only available as ASCII files without accompanying SPSS set-up files. SPSS files for the 1972 study were created by John Simister, and redeposited at the Archive in 2000. Currently, the UK Data Archive holds only the SL versions of the GHS/GLF/GLS for 2007 and 2008. Reformatted Data 1973 to 1982 - Surrey SPSS Files SPSS files have been created by the University of Surrey for all study years from 1973 to 1982 inclusive. These early files were restructured and the case changed from the household to the individual with all of the household information duplicated for each individual. The Surrey SPSS files contain all the original variabl es as well as some extra derived variables (a few variables were omitted from the data files for 1973-76). In 1973 only, the section on leisure was not included in the Surrey SPSS files. This has subsequently been made available, however, and is now held in a separate study, General Household Survey, 1973: Leisure Questions (held under SN 3982). Records for the original GHS 1973-1982 ASCII files have been removed from the UK Data Archive catalogue, but the data are still preserved and available upon request. Users should note that GHS/GLF/GLS data are also available in formats other than SPSS.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Fuel poverty is the requirement to spend 10% or more of household income to maintain an adequate level or warmth. The energy efficiency of a house can be measured using the Standard Assessment Procedure (SAP). The procedure calculates a number between 1 and 100, low numbers generally indicates a house that has low levels of insulation and an inefficient heating system where as numbers closer to 100 indicate a very energy efficient house. SAP is the Government's recommended system for energy rating of dwellings. SAP is being used as a proxy for fuel poverty in households of people claiming income based benefits, given the link between income poverty and fuel poverty.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the locations found in the Kiva datasets included in an administrative or geographical region. You can also find poverty data about this region. This facilitates answering some of the tough questions about a region's poverty.
In the interest of preserving the original names and spelling for the locations/countries/regions all the data is in Excel format and has no preview (I think only the Kaggle recommended file types have preview - if anyone can show me how to do this for an xlsx file, it will be greatly appreciated)
The Tables datasets contain the most recent analysis of the MPI on countries and regions. These datasets are updated regularly. In unique regions_names_from_google_api you will find 3 levels of inclusion for every geocode provided in Kiva datasets. (village/town, administrative region, sub-national region - which can be administrative or geographical). These are the results from the Google API Geocoding process.
Files:
Dropped multiple columns, kept all the rows from loans.csv with names, tags, descriptions and got a csv file of 390MB instead of 2.13 GB. Basically is a simplified version of loans.csv (originally included in the analysis by beluga)
This is the loan_themes_by_region left joined with Tables_5.3_Contribution_of_Deprivations. (all the original entries from loan_themes and only the entries that match from Tables_5; for the regions that lack MPI data, you will find Nan)
These are the columns in the database:
Matched the loans in loan_themes_by_region with the regions that have info regarding MPI. This dataset brings together the amount invested in a region and the biggest problems the said region has to deal with. It is a join between the loan_themes_by_region provided by Kiva and Tables 5.3 Contribution_of_Deprivations.
It is a subset of the all_loan_theme_merged_with_geo_mpi_regions.xlsx, which contains only the entries that I could match with poverty decomposition data. It has the same columns.
Multidimensional poverty index decomposition for over 1000 regions part of 79 countries.
Table 5.3: Contribution of deprivations to the MPI, by sub-national regions
This table shows which dimensions and indicators contribute most to a region's MPI, which is useful for understanding the major source(s) of deprivation in a sub-national region.
Source: http://ophi.org.uk/multidimensional-poverty-index/global-mpi-2016/
MPI decomposition for 120 countries.
Table 7 All Published MPI Results since 2010
The table presents an archive of all MPI estimations published over the past 5 years, together with MPI, H, A and censored headcount ratios. For comparisons over time please use Table 6, which is strictly harmonised. The full set of data tables for each year published (Column A), is found on the 'data tables' page under 'Archive'.
The data in this file is shown in interactive plots on Oxford Poverty and Human Development Initiative website. http://www.dataforall.org/dashboard/ophi/index.php/
These are all the regions corresponding to the geocodes found in Kiva's loan_themes_by_region.
There are 718 unique entries, that you can join with any database from Kiva that has either a coordinates or region column.
Columns:
geo: pair of Lat, Lon (from loan_themes_by_region)
City: name of the city (has the most NaN's)
Administrative region: first level of administrative inclusion for the city/location; (the equivalent of county for US)
Sub-national region: second level of administrative inclusion for the geo pair. (like state for US)
Country: name of the country
Thanks to Shane Lynn for the batch geocoding and to Joseph Deferio for reverse geocoding:
https://www.shanelynn.ie/batch-geocoding-in-python-with-google-geocoding-api/
https://github.com/jdeferio/Reverse_Geocode
The MPI datasets you can find on the Oxford website (http://ophi.org.uk/) under Research.
"Citation: Alkire, S. and Kanagaratnam, U. (2018)
“Multidimensional Poverty Index Winter 2017-18: Brief methodological note and results.” Oxford Poverty and Human Development Initiative, University of Oxford, OPHI Methodological Notes 45."
This dataset details changes to multidimensional poverty over time for 34 countries and their sub-national regions where possible. The Global Multidimensional Poverty Index (MPI) reflects the combined simultaneous disadvantages poor people experience across different areas of their lives, including education, health and living standards. If people are deprived in at least one-third of ten weighted indicators, they are identified as multi-dimensionally poor. For further information on the MPI visit: http://www.ophi.org.uk/multidimensional-poverty-index/
The dataset is an appendix to the Methodological Note – Winter 2014/2015 (http://www.ophi.org.uk/multidimensional-poverty-index/mpi-2014-2015/mpi-methodology/) and Multidimensional Poverty Dynamics: Methodology and Results for 34 countries (http://www.ophi.org.uk/wp-content/uploads/OPHI-RP-41a.pdf?0a8fd7).
Please site the data as: Alkire, S., J. M. Roche and A. Vaz (2014): “Multidimensional Poverty Dynamics: Methodology and Results for 34 countries”, Oxford Poverty and Human Development Initiative, Oxford University. ophi.qeh.ox.ac.uk
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This shows fuel poor households as a proportion of all households in the geographical area (modelled) using the Low Income Low Energy Efficiency (LILEE) measure. Since 2021 (2019 data) the LILEE indicator considers a household to be fuel poor if: it is living in a property with an energy efficiency rating of band D, E, F or G as determined by the most up-to-date Fuel Poverty Energy Efficiency Rating (FPEER) methodologyits disposable income (income after housing costs (AHC) and energy needs) would be below the poverty line. The Government is interested in the amount of energy people need to consume to have a warm, well-lit home, with hot water for everyday use, and the running of appliances. Therefore, fuel poverty is measured based on required energy bills rather than actual spending. This ensures that those households who have low energy bills simply because they actively limit their use of energy at home, Fuel poverty statistics are based on data from the English Housing Survey (EHS). Estimates of fuel poverty at the regional level are taken from the main fuel poverty statistics. Estimates at the sub-regional level should only be used to look at general trends and identify areas of particularly high or low fuel poverty. They should not be used to identify trends over time.Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
An estimation of the number of people with cardiovascular and respiratory conditions living in poverty in private households in England.
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Longitudinal data is limited to income information and a limited set of critical qualitative, non-monetary variables of deprivation, aimed at identifying the incidence and dynamic processes of persistence of poverty and social exclusion among subgroups in the population. The longitudinal component is also more limited in sample size compared to the primary, cross-sectional component. Furthermore, for any given set of individuals, microlevel changes are followed up only for a limited duration, such as a period of four years.
For both the cross-sectional and longitudinal components, all household and personal data are linkable. Furthermore, modules providing updated information in the field of social exclusion is included starting from 2005.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
This is the 3rd release of 2011 Longitudinal user database as published by EUROSTAT in September 2014.
National
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Mixed
This dataset contains detailed Global Multidimensional Poverty Index (MPI) data for 110 countries.The Global MPI reflects the combined simultaneous disadvantages poor people experience across different areas of their lives, including education, health and living standards. If people are deprived in at least one-third of ten weighted indicators, they are identified as multi-dimensionally poor. For further information on the MPI visit: http://www.ophi.org.uk/multidimensional-poverty-index/
The dataset includes main MPI results for each country, the proportion of people who are MPI poor and experience deprivations in each indicator of poverty, the percentage contribution of deprivations to the MPI for each country, and other measures of poverty and wellbeing at the national level. It is an appendix to OPHI's Methodological Note – Winter 2014/2015 (http://www.ophi.org.uk/multidimensional-poverty-index/mpi-2014-2015/mpi-methodology/)
Please cite the data as: Alkire, S., Conconi, A., Robles, G. and Seth, S. (2015). “Multidimensional Poverty Index, Winter 2014/2015: Brief Methodological Note and Results.” OPHI Briefing 27, University of Oxford, January.
These statistics update the English indices of deprivation 2015.
The English indices of deprivation measure relative deprivation in small areas in England called lower-layer super output areas. The index of multiple deprivation is the most widely used of these indices.
The statistical release and FAQ document (above) explain how the Indices of Deprivation 2019 (IoD2019) and the Index of Multiple Deprivation (IMD2019) can be used and expand on the headline points in the infographic. Both documents also help users navigate the various data files and guidance documents available.
The first data file contains the IMD2019 ranks and deciles and is usually sufficient for the purposes of most users.
Mapping resources and links to the IoD2019 explorer and Open Data Communities platform can be found on our IoD2019 mapping resource page.
Further detail is available in the research report, which gives detailed guidance on how to interpret the data and presents some further findings, and the technical report, which describes the methodology and quality assurance processes underpinning the indices.
We have also published supplementary outputs covering England and Wales.
In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 6th version of the 2010 Cross-Sectional User Database as released in July 2015 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The index provides the only comprehensive measure available for non-income poverty, which has become a critical underpinning of the SDGs. Critically the MPI comprises variables that are already reported under the Demographic Health Surveys (DHS) and Multi-Indicator Cluster Surveys (MICS) The resources subnational multidimensional poverty data from the data tables published by the Oxford Poverty and Human Development Initiative (OPHI), University of Oxford. The global Multidimensional Poverty Index (MPI) measures multidimensional poverty in over 100 developing countries, using internationally comparable datasets and is updated annually. The measure captures the severe deprivations that each person faces at the same time using information from 10 indicators, which are grouped into three equally weighted dimensions: health, education, and living standards. The global MPI methodology is detailed in Alkire, Kanagaratnam & Suppa (2023)
The Born in Bradford study is tracking the health and wellbeing of over 13,500 children, and their parents born at Bradford Royal Infirmary between March 2007 and December 2010.
Born in Bradford is a prospective pregnancy and birth cohort established to examine how genetic, nutritional, environmental, behavioral and social factors affect health and development during childhood, and subsequently adult life, in a deprived multi-ethnic population. It was developed in close consultation with local communities, clinicians and policy makers with commitment from the outset to undertake research that would both inform interventions to improve health in the city and generate robust science relevant to similar communities in the UK and across the world. Between 2007 and 2011 information on a wide range of characteristics were collected from 12,453 women (and 3,356 partners) who experienced 13,778 pregnancies and delivered 13,818 live births.
Notes
Data Presentation: Born in Bradford Data
Born in Bradford Data Dictionary
Born in Bradford has a number of unique strengths: a) Composition. Half of all the families recruited are living in the UK’s most deprived wards, and 45% are of Pakistani origin. Half of Pakistani-origin mothers and fathers were born outside the UK and over half are related to their partner. This combination enhances the opportunity to study the interplay of deprivation, ethnicity, migration and cultural characteristics and their relationship to social, economic and health outcomes research relevant to many communities across the world.
b) Rich characterization. Detailed information has been collected from parents about demographic, economic, lifestyle, cultural, medical and health factors. Pregnancy oral glucose tolerance tests (OGTT), have been completed in 85% of the cohort and in combination with repeat fetal ultrasound data and subsequent follow-up growth and adiposity (repeat skinfolds, weight and height from birth to current age) will enable BiB uniquely to explore ethnic differences in body composition trajectories through infancy and childhood.
c) Genetic and biomarker data. Maternal, neonatal and follow-up child blood samples have provided biomarker measures of adiposity and immunity, together with stored samples, for which funding has been secured, to assess targeted NMR metabolites in maternal pregnancy fasting samples, cord-blood and infant samples taken at 12-24 months. Genome wide data is available for 9000+ mothers and 8000+ children and funding has been secured for DNA methylation of 1000 mother-child pairs. Our BiB biobank contains 200,000 stored samples.
d) System-wide coverage. The study has successfully linked primary and secondary care, radiology, laboratory and local authority data. This successful data linkage to routine health and education data will allow life-time follow up of clinical outcomes for BiB children and their parents, and educational attainment for children.
e) Community involvement. Close links with members of the public and particularly with cohort members allow the co-production of research in terms of the identification of research questions, monitoring the demands research makes on participants and discussion of the implementation of findings. The study has strong community roots and city-wide support.
Full details of the cohort and related publications can be found on the website
Patient characteristics Children born in the city of Bradford Claims years: 2007-2011 12,453 women with 13,776 pregnancies and 3,448 of their partners Cord blood samples have been obtained and stored and DNA extraction on 10,000 mother\offspring pairs. Sex: Adults: 12,453 women, 3,448 males
Application
If you are interested in working with these data, the application packet, with examples, can be found here: Born in Bradford Application Packet
This data was generated as part of an 18 month ESRC funded project,as part of UKRI’s rapid response to COVID-19. The project examines how UK period poverty initiatives mitigated Covid-19 challenges in light of lockdown measures and closure of services, and how they continued to meet the needs of those experiencing period poverty across the UK. Applied social science research methodologies were utilised to collect and analyse data as this project, about the Covid-19 pandemic, was undertaken during an ongoing ‘real world’ pandemic. Data collection was divided into two phases. Phase 1 (October 2020 – February 2021) collected data from period poverty organisations in the UK using semi-structured interviews and an online survey to develop an in-depth understanding of how period poverty organisations were responding to and navigating the Covid-19 Pandemic. Having collected and analysed this data, phase 2 (June – September 2021) used an online survey to collect data from people experiencing period poverty in order to better understand their lived experiences during the pandemic. Our dataset comprises of phase 1 interview transcripts and online survey responses, and phase 2 online survey responses.
Period poverty refers not only to economic hardship with accessing period products, but also to a poverty of education, resources, rights and freedom from stigma for girls and menstruators (1). Since March 2020, and the introduction of lockdown/social distancing measures as a result of the Covid-19 pandemic, more than 1 of every 10 girls (aged 14-21) cannot afford period products and instead must use makeshift products (toilet roll, socks/other fabric, newspaper/paper). Nearly a quarter (22%) of those who can afford products struggle to access them, mostly because they cannot find them in the shops, or because their usual source/s is low on products/closed (2).
Community /non-profit initiatives face new challenges related to Covid-19 lockdown measures as they strive to continue to support those experiencing period poverty. Challenges include accessing stocks of period products, distribution of products given lockdown restrictions, availability of staff/volunteer assistance and the emergence of 'new' vulnerable groups. There is an urgent need to capture how initiatives are adapting to challenges, to continue to support the needs of those experiencing period poverty during the pandemic. This data is crucial to informing current practice, shaping policy, developing strategies within the ongoing crisis and any future crises, and ensuring women and girls' voices are centralised.
The project builds upon existing limited knowledge by providing insight into how UK based initiatives and projects are mitigating challenges linked to Covid-19, by examining how they are continuing to meet the needs of those experiencing period poverty and identifying any gaps in provision.
Abstract copyright UK Data Service and data collection copyright owner.
The English Housing Survey (EHS) is a continuous national survey commissioned by the Ministry of Housing, Community and Local Government (MHCLG) that collects information about people's housing circumstances and the condition and energy efficiency of housing in England. The EHS brings together two previous survey series into a single fieldwork operation: the English House Condition Survey (EHCS) (available from the UK Data Archive under GN 33158) and the Survey of English Housing (SEH) (available under GN 33277). The EHS covers all housing tenures. The information obtained through the survey provides an accurate picture of people living in the dwelling, and their views on housing and their neighbourhoods. The survey is also used to inform the development and monitoring of the Ministry's housing policies. Results from the survey are also used by a wide range of other users including other government departments, local authorities, housing associations, landlords, academics, construction industry professionals, consultants, and the general public.
The EHS has a complex multi-stage methodology consisting of two main elements; an initial interview survey of around 12,000 households and a follow-up physical inspection. Some further elements are also periodically included in or derived from the EHS: for 2008 and 2009, a desk-based market valuation was conducted of a sub-sample of 8,000 dwellings (including vacant ones), but this was not carried out from 2010 onwards. A periodic follow-up survey of private landlords and agents (the Private Landlords Survey (PLS)) is conducted using information from the EHS interview survey. Fuel Poverty datasets are also available from 2003, created by the Department for Energy and Climate Change (DECC).
The EHS interview survey sample formed part of the Integrated Household Survey (IHS) (available from the Archive under GN 33420) from April 2008 to April 2011. During this period the core questions from the IHS formed part of the EHS questionnaire.
End User Licence and Special Licence Versions:
From 2014 data onwards, the End User Licence (EUL) versions of the EHS will only include derived variables. In addition the number of variables on the new EUL datasets has been reduced and disclosure control increased on certain remaining variables. New Special Licence versions of the EHS will be deposited later in the year, which will be of a similar nature to previous EHS EUL datasets and will include derived and raw datasets.
Further information about the EHS and the latest news, reports and tables can be found on the GOV.UK English Housing Survey web pages.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents findings from the third (wave 3) in a series of follow up reports to the 2017 Mental Health of Children and Young People (MHCYP) survey, conducted in 2022. The sample includes 2,866 of the children and young people who took part in the MHCYP 2017 survey. The mental health of children and young people aged 7 to 24 years living in England in 2022 is examined, as well as their household circumstances, and their experiences of education, employment and services and of life in their families and communities. Comparisons are made with 2017, 2020 (wave 1) and 2021 (wave 2), where possible, to monitor changes over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.700 % in 2021. This records an increase from the previous number of 11.500 % for 2020. United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 11.600 % from Dec 1968 (Median) to 2021, with 54 observations. The data reached an all-time high of 13.700 % in 1993 and a record low of 4.500 % in 1968. United Kingdom UK: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).