These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa
Traffic fatalities within the City of Chicago that are included in Vision Zero Chicago (VZC) statistics. Vision Zero is Chicago’s commitment to eliminating fatalities and serious injuries from traffic crashes. The VZC Traffic Fatality List is compiled by the Chicago Department of Transportation (CDOT) after monthly reviews of fatal traffic crash information provided by Chicago Police Department’s Major Accident Investigation Unit (MAIU). CDOT uses a standardized process – sometimes differing from other sources and everyday use of the term -- to determine whether a death is a “traffic fatality.” Therefore, the traffic fatalities included in this list may differ from the fatal crashes reported in the full Traffic Crashes dataset (https://data.cityofchicago.org/d/85ca-t3if). Official traffic crash data are published by the Illinois Department of Transportation (IDOT) on an annual basis. This VZC Traffic Fatality List is updated monthly. Once IDOT publishes its crash data for a year, this dataset is edited to reflect IDOT’s findings. VZC Traffic Fatalities can be linked with other traffic crash datasets using the “Person_ID” field. State of Illinois considers a “traffic fatality” as any death caused by a traffic crash involving a motor vehicle, within 30 days of the crash. Fatalities that meet this definition are included in this VZC Traffic Fatality List unless excluded by any criteria below. There may be records in this dataset that do not appear as fatalities in the other datasets. The following criteria exclude a death from being considered a "traffic fatality," and are derived from Federal and State reporting standards. The Medical Examiner determined that the primary cause of the fatality was not the traffic crash, including: a. The fatality was reported as a suicide based on a police investigation. b. The fatality was reported as a homicide in which the "party at fault" intentionally inflicted serious bodily harm that caused the victim's death. c. The fatality was caused directly and exclusively by a medical condition or the fatality was not attributable to road user movement on a public roadway. (Note: If a person driving suffers a medical emergency and consequently hits and kills another road user, the other road user is included, although the driver suffering a medical emergency is excluded.) The crash did not occur within a trafficway. The crash involved a train or other such mode of transport within the rail dedicated right-of-way. The fatality was on a roadway not under Chicago Police Department jurisdiction, including: a. The fatality was occurred on an expressway. The City of Chicago does not have oversight on the expressway system. However, a fatality on expressway ramps occurring within the City jurisdiction will be counted in VZC Traffic Fatality List. b. The fatality occurred outside City limits. Crashes on streets along the City boundary may be assigned to another jurisdiction after the investigation if it is determined that the crash started or substantially occurred on the side of the street that is outside the City limits. Jurisdiction of streets along the City boundary are split between City and neighboring jurisdictions along the street centerline. The fatality is not a person (e.g., an animal). Change 12/7/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Road accidents pose significant threats to public safety and necessitate a comprehensive understanding of various factors influencing their occurrence. This article explores key aspects related to accident severity and emphasizes the importance of effective road management strategies.
To enhance road safety, it is crucial to delve into the geographic and temporal dimensions of road incidents. Analyzing the locations and times at which accidents frequently occur enables authorities to implement targeted interventions. This section discusses the significance of spatial and temporal analysis in devising proactive safety measures.
A robust dataset forms the foundation for meaningful research in traffic incident analysis. This segment highlights the need for comprehensive data collection, emphasizing variables such as road infrastructure, vehicle types, and driver demographics. The article emphasizes the importance of open and accessible datasets to facilitate research and policy development.
Weather and road conditions play a pivotal role in determining accident rates. This section explores the correlations between adverse weather, poor road conditions, and increased accident severity. Understanding these relationships can aid in developing strategies to mitigate risks during inclement weather.
Effective road management involves identifying accident hotspots and understanding the underlying risk factors. By employing data-driven analysis techniques, authorities can pinpoint areas with high accident rates and implement targeted interventions. This portion of the article discusses methodologies for hotspot identification and risk factor analysis.
Harnessing the power of data is essential for developing proactive strategies to reduce road accidents. This section focuses on data-driven approaches, including predictive modeling and machine learning, to identify potential accident scenarios and implement preventive measures. The integration of technology and analytics is crucial for achieving substantial improvements in road safety.
Urban planning plays a crucial role in shaping road safety outcomes. This part of the article explores how traffic collision analysis can inform urban planning strategies. By incorporating safety considerations into urban design, cities can create environments that minimize the risk of accidents and enhance overall road safety.
Understanding patterns of driver behavior is paramount for effective road management. This section examines the impact of driver behavior on accident rates and discusses how insights into these patterns can inform targeted educational campaigns and enforcement strategies.
In conclusion, this article emphasizes the multifaceted nature of road safety and the importance of a holistic approach to accident prevention. By considering factors such as geographic and temporal aspects, comprehensive datasets, weather and road conditions, hotspots and risk factors, data-driven approaches, urban planning, and driver behavior, authorities can formulate effective road management strategies to enhance public safety.
This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table.
The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here.
Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context The UK government amassed traffic data from 2000 and 2018, recording over 1.8 million accidents in the process and making this one of the most comprehensive traffic data sets out there. It's a huge picture of a country undergoing change.
Content There is 1 CSV File in this set. Accidents are the primary ones and have references by Accident_Index to the casualties and vehicles tables. This might be better done as a database.
Description This Dataset contains 33 Features covering over a 1.8million records. this dataset consists of various features like, Accidental / Longitude: Location of Accident
Accident_Severity: Accident Severity on the Scale of 1 to 5
Number_of_Vehicles: Number of Vehicles Involved
Number_of_Casualties: Number of Casualties in Accident
Light_Conditions: Lighting Condition on the day of Accident
Weather_Conditions: Weather Conditions on the day of the Accident
Road_Surface_Conditions: Road Surface Conditions of Accidental Spot
Year: Year of Accidental Event
Inspiration Questions to ask about this data are, - What is the number of casualties on each day of the week? - On each day of the week, what is the maximum and minimum speed limit on the roads the accidents happened? - What is the importance of Light and Weather conditions in predicting accident severity? - What does your intuition say and what does the data portray? - To predict the severity of the accidents.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Crashes data includes crash event level details such as location - the Lat/Long of the nearest intersection, A and B street names, with distance and direction of the crash from nearest intersection, etc... It also includes crash level details like weather and roadway conditions, and time of day. Also included are the involved party (vehicle involved with), primary collision factor and severity of injury in terms of fatalities, and severe, moderate and minor injuries per crash.
The vehicles data includes the vehicle level details of the crash such as vehicle types, driver's (vehicle, party) age and sex, driver conditions and violations proceeding the crash, etc...
There is a one to many relationship that needs to be built that relates the crash to the vehicles involved. (i.e. there are an average of 2.07 vehicles/parties involved per crash)
Match the Crash name in vehicle data to the Name in the Crash data to relate the two sets of data.
This dataset focuses on tracking fatalities from motor vehicle crashes in Virginia, with a breakdown of those fatalities by the age of the individuals involved. This dataset is crucial for understanding how age impacts the likelihood of being killed in a traffic accident and can help target safety initiatives for specific age groups.
Attributes about each crash case which may consist of a single or multiple reports occurring during the year.
The State of Michigan’s criteria for a crash is a motor vehicle that was in transport and on the roadway, that resulted in death, injury, or property damage of $1,000 or more. Traffic crashes in this dataset are derived from SEMCOG’s Open Data Portal. Each row in the dataset represents a traffic crash that includes data about when and where the crash occurred, road conditions, number of individuals involved in the crash, and various factors that apply to the crash (Train, Bus, Deer, etc.). Also included is the number of injuries and fatalities that are associated with the crash.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Australian Road Deaths Database provides basic details of road transport crash fatalities in Australia as reported by the police each month to the State and Territory road safety authorities. Road deaths from recent months are preliminary and the series is subject to revision.
The data is collected from the year 1989 to 2021, Click here to lear more about the dataset.
Bureau of Infrastructure and Transport Research Economics: The Bureau of Infrastructure and Transport Research Economics (BITRE) provides economic analysis, research and statistics on infrastructure, transport and cities issues to inform both Australian Government policy development and wider community understanding. click here
Please contact me if any part of the data is to be removed.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This simulated dataset represents monthly traffic accident statistics for all 50 US states during the year 2023. Each record contains the number of accidents, fatalities, and serious injuries, providing a structured view of national road safety trends.
It is ideal for analysts interested in transportation safety, policy impact studies, and time-series forecasting. The format closely mirrors typical reports issued by federal transportation safety boards.
This is a subset of a larger dataset. This dataset includes pedestrians and cyclists killed in traffic collisions in 2021.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa