100+ datasets found
  1. Global Country Information Dataset 2023

    • kaggle.com
    zip
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
    Explore at:
    zip(24063 bytes)Available download formats
    Dataset updated
    Jul 8, 2023
    Authors
    Nidula Elgiriyewithana ⚡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    DOI

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.

    Data Source: This dataset was compiled from multiple data sources

    If this was helpful, a vote is appreciated ❤️ Thank you 🙂

  2. 🌍 World Population by Country 2025 (Latest)

    • kaggle.com
    zip
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asadullah Shehbaz (2025). 🌍 World Population by Country 2025 (Latest) [Dataset]. https://www.kaggle.com/datasets/asadullahcreative/world-population-by-country-2025
    Explore at:
    zip(9275 bytes)Available download formats
    Dataset updated
    Oct 15, 2025
    Authors
    Asadullah Shehbaz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Have you ever wondered how the population landscape of our planet looks in 2025? This dataset brings together the latest population statistics for 233 countries and territories, carefully collected from Worldometers.info — one of the most trusted global data sources.

    📊 It reveals how countries are growing, shrinking, and evolving demographically. From population density to fertility rate, from migration trends to urbanization, every number tells a story about humanity’s future.

    🌆 You can explore which nations are rapidly expanding, which are aging, and how urban populations are transforming global living patterns. This dataset includes key metrics like yearly population change, net migration, land area, fertility rate, and each country’s share of the world population.

    🧠 Ideal for data analysis, visualization, and machine learning, it can be used to study global trends, forecast population growth, or build engaging dashboards in Python, R, or Tableau. It’s also perfect for students and researchers exploring geography, demographics, or development studies.

    📈 Whether you’re analyzing Asia’s population boom, Europe’s aging curve, or Africa’s youthful surge — this dataset gives you a complete view of the world’s demographic balance in 2025. 🌎 With 233 rows and 12 insightful columns, it’s ready for your next EDA, visualization, or predictive modeling project.

    🚀 Dive in, explore the data, and uncover what the world looks like — one country at a time.

  3. World Population Analysis

    • kaggle.com
    zip
    Updated Oct 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manas Parashar (2023). World Population Analysis [Dataset]. https://www.kaggle.com/datasets/parasharmanas/world-population-analysis
    Explore at:
    zip(8635 bytes)Available download formats
    Dataset updated
    Oct 5, 2023
    Authors
    Manas Parashar
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    The analysis of the world's population is a complex and multifaceted endeavor, encompassing a wide range of demographic, economic, social, and environmental factors. Understanding these trends and dynamics is crucial for policymakers, researchers, and organizations to make informed decisions and plan for the future. This article delves into a comprehensive analysis of the world's population, examining its growth patterns, demographic shifts, challenges, and opportunities.

    Population Growth. The world's population has experienced remarkable growth over the past century. In 1927, the global population reached its first billion, and since then, it has surged exponentially. As of the latest available data in 2021, the world's population stands at approximately 7.8 billion. Projections indicate that this figure will continue to rise, with estimates suggesting a population of over 9 billion by 2050.

    Factors Driving Population Growth. 1. Fertility Rates: High birth rates, particularly in developing countries, have been a significant driver of population growth. Access to healthcare, education, and family planning services plays a crucial role in reducing fertility rates. 2. Increased Life Expectancy: Improvements in healthcare, nutrition, and sanitation have led to longer life expectancy worldwide. This has contributed to population growth, as people are living longer and healthier lives. 3. Demographic Shifts: Demographic shifts are shaping our world in significant ways. In developed countries, an aging population with a higher median age is reshaping healthcare systems, retirement policies, and workforce dynamics. Simultaneously, urbanization is accelerating, with over half of the global population now living in cities, presenting challenges and opportunities for infrastructure, resource management, and social development.

    Challenges. 1. Overpopulation: Rapid population growth in certain regions can strain resources, leading to issues such as food scarcity, water shortages, and overcrowding. 2. Aging Workforce: As the global population ages, there may be a shortage of skilled workers, affecting economic productivity and social support systems. 3. Environmental Impact: Population growth is closely linked to increased resource consumption and environmental degradation. Sustainable development and conservation efforts are essential to mitigate these effects.

    Opportunities. 1. Demographic Dividend: Countries with youthful populations can benefit from a demographic dividend, where a large working-age population can drive economic growth and innovation. 2. Cultural Diversity: A diverse global population can lead to cultural exchange, creativity, and a richer societal tapestry. 3. Innovation and Technology: Addressing the challenges posed by population growth can drive innovation in areas such as healthcare, agriculture, and energy production.

    Analysing the world's population is a complex task that involves understanding its growth patterns, demographic shifts, challenges, and opportunities. As the global population continues to rise, it is essential to address the associated challenges while harnessing the potential benefits of a diverse and dynamic world population. Policymakers, researchers, and organizations must work collaboratively to create sustainable solutions that ensure a prosperous future for all.

  4. Total population worldwide 1950-2100

    • statista.com
    • feherkonyveloiroda.hu
    • +2more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  5. World Population by Countries (2025)

    • kaggle.com
    zip
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025
    Explore at:
    zip(9000 bytes)Available download formats
    Dataset updated
    Jan 23, 2025
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  6. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. P

    Percentage of Population within 1 5 & 10km Coastal Buffers

    • pacificdata.org
    csv, gpkg +1
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC Statistics for Development Division (SDD) (2019). Percentage of Population within 1 5 & 10km Coastal Buffers [Dataset]. https://pacificdata.org/data/dataset/percentage-of-population-within-1-5-10km-coastal-buffers
    Explore at:
    gpkg(278528), zipped shapefile(146506), csv(846)Available download formats
    Dataset updated
    Aug 12, 2019
    Dataset provided by
    SPC Statistics for Development Division (SDD)
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    A collaborative project between SPC, the World Fish Centre and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs). These estimates are stratified into 1, 5, and 10km zones. More information about this dataset: https://sdd.spc.int/mapping-coastal

  8. Population estimates time series dataset

    • ons.gov.uk
    • cy.ons.gov.uk
    csv, xlsx
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Population estimates time series dataset [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatestimeseriesdataset
    Explore at:
    csv, xlsxAvailable download formats
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The mid-year estimates refer to the population on 30 June of the reference year and are produced in line with the standard United Nations (UN) definition for population estimates. They are the official set of population estimates for the UK and its constituent countries, the regions and counties of England, and local authorities and their equivalents.

  9. T

    Global population survey data set (1950-2018)

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen DONG (2020). Global population survey data set (1950-2018) [Dataset]. https://data.tpdc.ac.cn/en/data/ece5509f-2a2c-4a11-976e-8d939a419a6c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    TPDC
    Authors
    Wen DONG
    Area covered
    Description

    "Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."

  10. Indicator 10.7.4: Number of refugees per 100 000 population by country of...

    • sdg-template-cat-sdgs.opendata.arcgis.com
    • sdg-template-sdgs.hub.arcgis.com
    • +3more
    Updated Sep 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2021). Indicator 10.7.4: Number of refugees per 100 000 population by country of origin (per 100 000 population) [Dataset]. https://sdg-template-cat-sdgs.opendata.arcgis.com/datasets/undesa::indicator-10-7-4-number-of-refugees-per-100-000-population-by-country-of-origin-per-100-000-population
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Number of refugees per 100 000 population by country of origin (per 100 000 population)Series Code: SM_POP_REFG_ORRelease Version: 2021.Q2.G.03 This dataset is part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 10.7.4: Proportion of the population who are refugees, by country of originTarget 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesGoal 10: Reduce inequality within and among countriesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  11. World Development Indicators

    • kaggle.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaggle (2017). World Development Indicators [Dataset]. https://www.kaggle.com/kaggle/world-development-indicators
    Explore at:
    zip(387054886 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Kaggle
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    The World Development Indicators from the World Bank contain over a thousand annual indicators of economic development from hundreds of countries around the world.

    Here's a list of the available indicators along with a list of the available countries.

    For example, this data includes the life expectancy at birth from many countries around the world:

    Life expactancy at birth map

    The dataset hosted here is a slightly transformed verion of the raw files available here to facilitate analytics.

  12. N

    Country Life Acres, MO Non-Hispanic Population Breakdown By Race Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Country Life Acres, MO Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/99d7f3a1-ef82-11ef-9e71-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Country Life Acres, Missouri
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Country Life Acres by race. It includes the distribution of the Non-Hispanic population of Country Life Acres across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Country Life Acres across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Country Life Acres, the largest racial group is White alone with a population of 74 (96.10% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Country Life Acres
    • Population: The population of the racial category (for Non-Hispanic) in the Country Life Acres is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Country Life Acres total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Life Acres Population by Race & Ethnicity. You can refer the same here

  13. n

    Human Life-Table Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Human Life-Table Database [Dataset]. http://identifiers.org/RRID:SCR_006248
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.

  14. Population on 1 January

    • ec.europa.eu
    • db.nomics.world
    • +3more
    Updated Oct 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Population on 1 January [Dataset]. http://doi.org/10.2908/TPS00001
    Explore at:
    application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0, tsv, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.genericdata+xml;version=2.1, jsonAvailable download formats
    Dataset updated
    Oct 14, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2014 - 2025
    Area covered
    Slovakia, Metropolitan France, Estonia, Denmark, Iceland, Albania, Cyprus, Latvia, North Macedonia, Russia
    Description

    The number of persons having their usual residence in a country on 1 January of the respective year. When usually resident population is not available, countries may report legal or registered residents.

  15. g

    GeoPostcodes Global Population by ZIP Code Database

    • geopostcodes.com
    csv
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GeoPostcodes Global Population by ZIP Code Database [Dataset]. https://www.geopostcodes.com/population-by-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset authored and provided by
    GeoPostcodes
    License

    https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/

    Time period covered
    Nov 22, 2025
    Area covered
    World
    Description

    Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.

  16. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Africa, Malawi, Zimbabwe, Namibia, Zambia, Botswana, Lesotho, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  17. U

    United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  18. N

    Town And Country, MO Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Town And Country, MO Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/6bff30dc-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country, Missouri
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Town And Country by race. It includes the distribution of the Non-Hispanic population of Town And Country across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Town And Country across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Town And Country, the largest racial group is White alone with a population of 9,318 (83.18% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/town-and-country-mo-population-by-race-and-ethnicity.jpeg" alt="Town And Country Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Town And Country
    • Population: The population of the racial category (for Non-Hispanic) in the Town And Country is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Town And Country total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Race & Ethnicity. You can refer the same here

  19. f

    Data_Sheet_1_The effect of diabetes on COVID-19 incidence and mortality:...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Mar 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rossi, Paolo Giorgi; group, Reggio Emilia COVID-19 working; Bartolini, Letizia; Ottone, Marta; Bonvicini, Laura (2023). Data_Sheet_1_The effect of diabetes on COVID-19 incidence and mortality: Differences between highly-developed-country and high-migratory-pressure-country populations.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000980767
    Explore at:
    Dataset updated
    Mar 8, 2023
    Authors
    Rossi, Paolo Giorgi; group, Reggio Emilia COVID-19 working; Bartolini, Letizia; Ottone, Marta; Bonvicini, Laura
    Description

    The objective of this study was to compare the effect of diabetes and pathologies potentially related to diabetes on the risk of infection and death from COVID-19 among people from Highly-Developed-Country (HDC), including Italians, and immigrants from the High-Migratory-Pressure-Countries (HMPC). Among the population with diabetes, whose prevalence is known to be higher among immigrants, we compared the effect of body mass index among HDC and HMPC populations. A population-based cohort study was conducted, using population registries and routinely collected surveillance data. The population was stratified into HDC and HMPC, according to the place of birth; moreover, a focus was set on the South Asiatic population. Analyses restricted to the population with type-2 diabetes were performed. We reported incidence (IRR) and mortality rate ratios (MRR) and hazard ratios (HR) with 95% confidence interval (CI) to estimate the effect of diabetes on SARS-CoV-2 infection and COVID-19 mortality. Overall, IRR of infection and MRR from COVID-19 comparing HMPC with HDC group were 0.84 (95% CI 0.82–0.87) and 0.67 (95% CI 0.46–0.99), respectively. The effect of diabetes on the risk of infection and death from COVID-19 was slightly higher in the HMPC population than in the HDC population (HRs for infection: 1.37 95% CI 1.22–1.53 vs. 1.20 95% CI 1.14–1.25; HRs for mortality: 3.96 95% CI 1.82–8.60 vs. 1.71 95% CI 1.50–1.95, respectively). No substantial difference in the strength of the association was observed between obesity or other comorbidities and SARS-CoV-2 infection. Similarly for COVID-19 mortality, HRs for obesity (HRs: 18.92 95% CI 4.48–79.87 vs. 3.91 95% CI 2.69–5.69) were larger in HMPC than in the HDC population, but differences could be due to chance. Among the population with diabetes, the HMPC group showed similar incidence (IRR: 0.99 95% CI: 0.88–1.12) and mortality (MRR: 0.89 95% CI: 0.49–1.61) to that of HDC individuals. The effect of obesity on incidence was similar in both HDC and HMPC populations (HRs: 1.73 95% CI 1.41–2.11 among HDC vs. 1.41 95% CI 0.63–3.17 among HMPC), although the estimates were very imprecise. Despite a higher prevalence of diabetes and a stronger effect of diabetes on COVID-19 mortality in HMPC than in the HDC population, our cohort did not show an overall excess risk of COVID-19 mortality in immigrants.

  20. Population by country of birth and nationality (Discontinued after June...

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Sep 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Population by country of birth and nationality (Discontinued after June 2021) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/internationalmigration/datasets/populationoftheunitedkingdombycountryofbirthandnationality
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    UK residents by broad country of birth and citizenship groups, broken down by UK country, local authority, unitary authority, metropolitan and London boroughs, and counties. Estimates from the Annual Population Survey.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
Organization logo

Global Country Information Dataset 2023

A Comprehensive Dataset Empowering In-Depth Analysis and Cross-Country Insights

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
zip(24063 bytes)Available download formats
Dataset updated
Jul 8, 2023
Authors
Nidula Elgiriyewithana ⚡
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

DOI

Key Features

  • Country: Name of the country.
  • Density (P/Km2): Population density measured in persons per square kilometer.
  • Abbreviation: Abbreviation or code representing the country.
  • Agricultural Land (%): Percentage of land area used for agricultural purposes.
  • Land Area (Km2): Total land area of the country in square kilometers.
  • Armed Forces Size: Size of the armed forces in the country.
  • Birth Rate: Number of births per 1,000 population per year.
  • Calling Code: International calling code for the country.
  • Capital/Major City: Name of the capital or major city.
  • CO2 Emissions: Carbon dioxide emissions in tons.
  • CPI: Consumer Price Index, a measure of inflation and purchasing power.
  • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
  • Currency_Code: Currency code used in the country.
  • Fertility Rate: Average number of children born to a woman during her lifetime.
  • Forested Area (%): Percentage of land area covered by forests.
  • Gasoline_Price: Price of gasoline per liter in local currency.
  • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
  • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
  • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
  • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
  • Largest City: Name of the country's largest city.
  • Life Expectancy: Average number of years a newborn is expected to live.
  • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
  • Minimum Wage: Minimum wage level in local currency.
  • Official Language: Official language(s) spoken in the country.
  • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
  • Physicians per Thousand: Number of physicians per thousand people.
  • Population: Total population of the country.
  • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
  • Tax Revenue (%): Tax revenue as a percentage of GDP.
  • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
  • Unemployment Rate: Percentage of the labor force that is unemployed.
  • Urban Population: Percentage of the population living in urban areas.
  • Latitude: Latitude coordinate of the country's location.
  • Longitude: Longitude coordinate of the country's location.

Potential Use Cases

  • Analyze population density and land area to study spatial distribution patterns.
  • Investigate the relationship between agricultural land and food security.
  • Examine carbon dioxide emissions and their impact on climate change.
  • Explore correlations between economic indicators such as GDP and various socio-economic factors.
  • Investigate educational enrollment rates and their implications for human capital development.
  • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
  • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
  • Investigate the role of taxation and its impact on economic development.
  • Explore urbanization trends and their social and environmental consequences.

Data Source: This dataset was compiled from multiple data sources

If this was helpful, a vote is appreciated ❤️ Thank you 🙂

Search
Clear search
Close search
Google apps
Main menu