100+ datasets found
  1. Live tables on housing supply: indicators of new supply

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Live tables on housing supply: indicators of new supply [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-house-building
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    Local authorities compiling this data or other interested parties may wish to see notes and definitions for house building which includes P2 full guidance notes.

    Live tables

    Data from live tables 253 and 253a is also published as http://opendatacommunities.org/def/concept/folders/themes/house-building" class="govuk-link">Open Data (linked data format).

    https://assets.publishing.service.gov.uk/media/68541eb5a3a282804858153b/LiveTable213.ods">Table 213: permanent dwellings started and completed, by tenure, England (quarterly)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">26.7 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/68541ee7a3a282804858153c/LiveTable217.ods">Table 217: permanent dwellings started and completed by tenure and region (quarterly)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">113 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

  2. Z

    A gridded dataset on population densities, real estate prices, transport and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent VIGUIE (2022). A gridded dataset on population densities, real estate prices, transport and land use inside 192 worldwide urban areas [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5747685
    Explore at:
    Dataset updated
    Sep 16, 2022
    Dataset provided by
    Quentin LEPETIT
    Charlotte LIOTTA
    Vincent VIGUIE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides, on a systematic basis, gridded population densities, rents, real estate prices, and transport times (both in public transport and private car) in 192 cities across the world.

  3. Number of households in the U.S. 1960-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of households in the U.S. 1960-2023 [Dataset]. https://www.statista.com/statistics/183635/number-of-households-in-the-us/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    How many households are in the U.S.?

    In 2023, there were 131.43 million households in the United States. This is a significant increase from 1960, when there were 52.8 million households in the U.S.

    What counts as a household?

    According to the U.S. Census Bureau, a household is considered to be all persons living within one housing unit. This includes apartments, houses, or single rooms, and consists of both related and unrelated people living together. For example, two roommates who share a living space but are not related would be considered a household in the eyes of the Census. It should be noted that group living quarters, such as college dorms, are not counted as households in the Census.

    Household changes

    While the population of the United States has been increasing, the average size of households in the U.S. has decreased since 1960. In 1960, there was an average of 3.33 people per household, but in 2023, this figure had decreased to 2.51 people per household. Additionally, two person households make up the majority of American households, followed closely by single-person households.

  4. Live tables on dwelling stock (including vacants)

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Live tables on dwelling stock (including vacants) [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-dwelling-stock-including-vacants
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    Live tables

    Data from live tables 120, 122, and 123 is also published as http://opendatacommunities.org/def/concept/folders/themes/housing-market" class="govuk-link">Open Data (linked data format).

    https://assets.publishing.service.gov.uk/media/682deb00b33f68eaba95391b/LiveTable100.ods">Table 100: number of dwellings by tenure and district, England

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">492 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/682deb17baff3dab9977518d/LiveTable104.ods">Table 104: by tenure, England (historical series)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">13.4 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    <h2 class="gem-c-at

  5. d

    Iowa Households by Household Type (ACS 5-Year Estimates)

    • catalog.data.gov
    • mydata.iowa.gov
    • +1more
    Updated Jun 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2024). Iowa Households by Household Type (ACS 5-Year Estimates) [Dataset]. https://catalog.data.gov/dataset/iowa-households-by-household-type-acs-5-year-estimates
    Explore at:
    Dataset updated
    Jun 14, 2024
    Dataset provided by
    data.iowa.gov
    Area covered
    Iowa
    Description

    This dataset contains Iowa households by household type for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B11001. A household includes all the persons who occupy a housing unit as their usual place of residence. A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied as separate living quarters. Household type includes All, All Family, Family - Married Couple, Family - All Single Householders, Family - Male Householder - No Wife Present, Family - Female Householder - No Husband Present, All Nonfamily, Nonfamily - Householder Living Alone, and Nonfamily - Householder Not Living Alone A family household is a household maintained by a householder who is in a family. A family group is defined as any two or more people residing together, and related by birth, marriage, or adoption. Householder refers to the person (or one of the people) in whose name the housing unit is owned or rented (maintained) or, if there is no such person, any adult member, excluding roomers, boarders, or paid employees. If the house is owned or rented jointly by a married couple, the householder may be either the husband or the wife.

  6. N

    Red House, New York Population Dataset: Yearly Figures, Population Change,...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Red House, New York Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f431f25-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Red House
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Red House town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Red House town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Red House town was 30, a 0.00% decrease year-by-year from 2021. Previously, in 2021, Red House town population was 30, a decline of 0.00% compared to a population of 30 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Red House town decreased by 8. In this period, the peak population was 38 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Red House town is shown in this column.
    • Year on Year Change: This column displays the change in Red House town population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Red House town Population by Year. You can refer the same here

  7. d

    HCA05 - Area, Houses and Population Data

    • datasalsa.com
    csv, json-stat, px +1
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Office (2024). HCA05 - Area, Houses and Population Data [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=hca05-area-houses-and-population-data
    Explore at:
    csv, xlsx, px, json-statAvailable download formats
    Dataset updated
    Nov 20, 2024
    Dataset authored and provided by
    Central Statistics Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 20, 2024
    Description

    HCA05 - Area, Houses and Population Data. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Area, Houses and Population Data...

  8. N

    House, NM Age Group Population Dataset: A Complete Breakdown of House Age...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). House, NM Age Group Population Dataset: A Complete Breakdown of House Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/452b8248-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Mexico, House
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the House population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for House. The dataset can be utilized to understand the population distribution of House by age. For example, using this dataset, we can identify the largest age group in House.

    Key observations

    The largest age group in House, NM was for the group of age 60 to 64 years years with a population of 16 (34.04%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in House, NM was the Under 5 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the House is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of House total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for House Population by Age. You can refer the same here

  9. e

    Census of population and housing - one percent sample (2011) - Dataset -...

    • b2find.eudat.eu
    Updated Apr 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census of population and housing - one percent sample (2011) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/4ccf9687-c699-59d0-a94c-4636393857de
    Explore at:
    Dataset updated
    Apr 30, 2023
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    The Census of Population and Housing is one of the most important surveys carried out by ISTAT. It is conducted every ten years from 1861, and the main objectives are: the count of the whole population and the recognition of its structural characteristics; updating and revision of civil registers; the definition of the legal population for juridical and electoral purposes; the collection of information about the number and structural characteristics of houses and buildings. The Census collects information about demographic and family structure of the population, the types of their households, their level of education, their employment status, and other informations on residents population. In 2011, for the first time, some information of socio-economic character were measured on a sample basis through the use of two types of questionnaire: one in a reduced form, with a few questions, including indispensable information for the production of the data required by the European Union with an high spatial detail, and one in complete form. In particular, Istat provides a 1% sample data (594,247 cases) released in two separate datasets: the first file (individui) refers to persons usually resident in private households and in Institutional households and the second one (alloggi) refers to living quarters. In urban areas with at least 20,000 inhabitants a sample was selected by a simple random sampling without replacement procedure of one third of the families. A complete version (long form) of the questionnaire has been sent to the sample, while a short version the questionnaire has been sent to all other inhabitants. web-based self-administered questionnaire (CAWI)

  10. CASAS Smart Home dataset - free living, motion, door, activity labels

    • zenodo.org
    zip
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diane Cook; Diane Cook (2025). CASAS Smart Home dataset - free living, motion, door, activity labels [Dataset]. http://doi.org/10.5281/zenodo.15708568
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 22, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Diane Cook; Diane Cook
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Measurement technique
    <p><strong>Citation</strong>: Please cite the following paper when using this dataset:<br>Cook, D., Crandall, A., Thomas, B., & Krishnan, N. (2013). <em>CASAS: A smart home in a box</em>. <a target="_new" rel="noopener">IEEE Computer, 46(7):62-69, 2013. https://doi.org/10.1109/MC.2012.328</a></p>
    Description

    This dataset represents ambient data collected longitudinally in 189 community homes. The data are collected over 18 years, from 2007 to 2024. This is a resource for analyzing naturalistic behavior in a home and building activity recognition models that operate in the wild.

    Data are collected continuously from ambient sensors while residents perform their normal routines. The data fields are date, time, sensor identifier, and message. The sensors consist of PIR (motion) sensors and magnetic door (open/close) sensors. Sensors are attached to ceilings and identified by their location in the home (e.g., Bathroom, Bedroom, DiningRoom, Bed, Bath, OfficeChair). If a home contains more than one room of a given type, the corresponding sensors are distinguished by a trailing letter to differentiate the rooms (e.g., BedroomA, BedroomB). The lens of most motion sensors are constrained to cover a 1 meter diameter area. To detect movement in a larger area, an unconstrained sensor is angled to cover an entire room or region and is indicated by Area (e.g., BedroomArea).

    There is one file per home. Some of the homes also include floorplans. Additionally, data from some of the homes is labeled with activities by an external annotator. There homes in this dataset are listed below with the number of residents.

    Home(s)#Residents Home#Residents Home#Residents

    hh101-hh106

    hh108-hh120

    hh122-hh130

    1hh: older adults living independently in retirement communityhh107, hh1212
    rw101, rw103, rw105, rw106, rw1071rw: older adults living independently in retirement communityrw104, rw1102
    mv1011mv: older adult living independently in retirement community
    tm001-tm003, tm005-tm011, tm013-tm022, tm026, tm029, tm032, tm035-tm0431tm: older adults living independently in retirement communitytm004, tm024, tm027, tm030, tm033 2
    ihs07, ihs11, ihs12, ihs21, ihs28, ihs35, ihs37, ihs38, ihs40, ihs58, ihs59, ihs68, ihs70, ihs75, ihs80, ihs84, ihs85, ihs95, ihs96, ihs107, ihs108, ihs114, ihs1181ihs: community-dwelling older adultsihs06, ihs08, ihs09, ihs22, ihs25, ihs60, ihs98, ihs100, ihs101, ihs104, ihs115, ihs116, ihs117, ihs1212 ihs14, ihs31, ihs93, ihs99, ihs109, ihs119, ihs120, ihs123, ihs124, ihs125>2
    mva001-mva002unknownmva: community-dwelling older adults
    mn57, mn77, mn82, mn851mv: community-dwelling older adultsmn50, mn62, mn64, mn79, mn83, mn862 mn33, mn51, mn58, mn59, mn61, mn71, mn73, mn76>2
    atmo1, atmo2, atmo4, atmo6-atmo10unknownatmo: community-dwelling families
    shib003-shib024, shiblsdfunknownshib: community-dwelling families
    aruba1community-dwelling older adultmilan2 cairo, paris>2
    navan1community-dwelling adultstulum2 laval>2
    kyoto10-212community-dwelling adults, different residents each year
  11. Census of Population and Housing, 1960: Public Use Sample, 1 in 100

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1960: Public Use Sample, 1 in 100 [Dataset]. http://doi.org/10.6077/j5/ohycfx
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Individual, Household
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  12. e

    Census of population and housing - Extended dataset (2011) - Dataset -...

    • b2find.eudat.eu
    Updated Oct 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census of population and housing - Extended dataset (2011) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/c47162a3-bc19-541e-9512-bfcb27519b18
    Explore at:
    Dataset updated
    Oct 28, 2023
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    The Census of Population and Housing is one of the most important surveys carried out by ISTAT. It is conducted every ten years from 1861, and the main objectives are: the count of the whole population and the recognition of its structural characteristics; updating and revision of civil registers; the definition of the legal population for juridical and electoral purposes; the collection of information about the number and structural characteristics of houses and buildings. The Census collects information about demographic and family structure of the population, the types of their households, their level of education, their employment status, and other informations on residents population. In 2011, for the first time, some information of socio-economic character were measured on a sample basis through the use of two types of questionnaire: one in a reduced form, with a few questions, including indispensable information for the production of the data required by the European Union with an high spatial detail, and one in complete form. The extended dataset is a supplement to the data of the 15th Population and Housing Census carried out by Istat in 2011. Compared to the data distributed by Istat, this version contains additional variables that report, for each census tracts of the Italian municipalities, information related to: - the professional position (number of employees classified through eight categories) - the housing supplies (heating, water, cooking, etc.) - disadvantaged family type (single parent, single parent with children under 15 and single person over 65) The dataset therefore allows to have more data than those released with the official census, useful in particular to carry out in-depth studies on the employment status, deprivation and poverty. 366,863 census tracts, 8,092 municipalities. In urban areas with at least 20,000 inhabitants a sample was selected by a simple random sampling without replacement procedure of one third of the families. A complete version (long form) of the questionnaire has been sent to the sample, while a short version the questionnaire has been sent to all other inhabitants.

  13. [DISCONTINUED] Proportion of population living in households considering...

    • data.europa.eu
    Updated Oct 16, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2015). [DISCONTINUED] Proportion of population living in households considering that they suffer from noise [Dataset]. https://data.europa.eu/data/datasets/kbprhmo5plu6yemxenzoig
    Explore at:
    Dataset updated
    Oct 16, 2015
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Description

    Dataset replaced by: http://data.europa.eu/euodp/data/dataset/fxzwH5qqU5iplMua0M5TQ

    The indicator shows the percentage of the total population who declare that they are affected either by noise from neighbours or from outside.

  14. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

  15. English Housing Survey data on owner occupiers, recent first time buyers and...

    • gov.uk
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). English Housing Survey data on owner occupiers, recent first time buyers and second homes [Dataset]. https://www.gov.uk/government/statistical-data-sets/owner-occupiers-recent-first-time-buyers-and-second-homes
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    Tables on:

    • trends in ownership
    • types of purchase
    • recent first-time buyers
    • types of mortgage
    • mortgage payments
    • leaseholders
    • moves out of owner occupation
    • second homes

    The previous Survey of English Housing live table number is given in brackets below. Please note from July 2024 amendments have been made to the following tables:

    Table FA2211 and FA2221 have been combined into table FA4222.

    Table FA2501 and FA2511 and FA2531 have been combined into table FA2555.

    For data prior to 2022-23 for the above tables, see discontinued tables.

    Live tables

    https://assets.publishing.service.gov.uk/media/687830bff5eb08157f36385f/FA2222_type_of_purchase_by_age_of_HRP_and_household_type.ods">FA2222 (FA2211 and FA2221): type of purchase by age of household reference person

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">12.5 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/687830e3760bf6cedaf5bd7e/FA2321_sources_of_finance_besides_mortgage_for_purchase_ofcurrentproperty.ods">FA2321 (S311): sources of finance, other than a mortgage, for purchase of current property

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">17.9 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    <a class="govuk-link" target="_self" tabindex="-1" aria-hidden="true" data-ga4-link='{"event_name":"file_download","type":"attachment"}' href="https://assets.pub

  16. a

    Total Number of Households

    • hub.arcgis.com
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Feb 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Total Number of Households [Dataset]. https://hub.arcgis.com/maps/e861ef45b17440c4a7afaab85500243b
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    A household consists of all the people occupying a housing unit. A household includes related and unrelated persons, if any, such as lodgers, foster children, wards, or employees who share the housing unit. A person living alone in a housing unit, or a group of unrelated people sharing a housing unit such as partners or roomers, is also counted as a household. The count of households excludes group quarters. Source: U.S. Bureau of the Census, American Community Survey Years Available: 2010, 2015-2019

  17. Orlando Neighborhood

    • kaggle.com
    Updated Oct 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Giovannini (2022). Orlando Neighborhood [Dataset]. https://www.kaggle.com/datasets/sgiov95/orlando-neighborhood
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 7, 2022
    Dataset provided by
    Kaggle
    Authors
    Sebastian Giovannini
    Area covered
    Orlando
    Description

    This dataset is a snapshot from October 2022 of all 48 homes in a section of a neighborhood nearby a large university in Central Florida. All of the homes are single family homes featuring a garage, a driveway, and a fenced-in backyard. Data was gathered by hand (keyboard) via a collection of sites, including Zillow, Realtor, Redfin, Trulia, and Orange County Property Appraiser. All homes were built in the same year in the early 2000's and feature central air and all other utilities typical of contemporary suburban homes in the United States. The area is close to a university and a large portion of renters are college students and young professionals, as well as families and older adults.

    There are 30 columns:

    • HID: House ID, a unique identifier for each house (int from 1 to 48, not the actual address number) -Sqft: The Square Footage of the Interior of the house (int) -LandSqft: The Total Square Footage of the land (int) -Neighbors: The number of homes directly adjacent to each house (int) -Stories: The number of stories in each house (int) -Pool: Does the house have a pool (int, 0 for 'No', 1 for 'Yes') -Bedrooms: The number of bedrooms in each house (int) -Bathrooms: The number of bathrooms (full or half) in each house (int) -DateLastSold: The date on which the house was last sold (datetime) -PropertyTaxes2022: The annual property taxes for 2022 (float) -OwnedByBank: Is the house owned by a bank (int, 0 for 'No', 1 for 'Yes') -OuterPortion: Is the house on the Outer Portion of the Neighborhood (int, 0 for 'No', 1 for 'Yes') -NextToLoudRoad: Is the house directly adjacent to a loud road (int, 0 for 'No', 1 for 'Yes') -PriceLastSold: Price that the house was last sold for (float) -Zestimate: Zillow's Price Estimate for the house (float) -RentZestimate: Zillow's Estimate for the Monthly Price of rent for the house (float) -RealtorcomEstimate: Realtor dot com's Estimate for the house (float) -RedfinEstimate: Redfin's Estimate for the house (float) -TruliaEstimate: Trulia's Estimate for the house (float) -OCPALandValue2022: The Land Value on the county's 2022 records (float) -OCPABuildingValue2022: The Building Value on the county's 2022 records (float) -OCPAFeaturesValue2022: The Features Value on the county's 2022 records (float) -OCPAMarketValue2022: The Market Value on the county's 2022 records (float) -OCPAAssessedValue2022: The Assessed Value on the county's 2022 records (float), AKA what homeowners are taxed on -OCPALandValue2021: The Land Value on the county's 2021 records (float) -OCPABuildingValue2021: The Building Value on the county's 2021 records (float) -OCPAFeaturesValue2021: The Features Value on the county's 2021 records (float) -OCPAMarketValue2021: The Market Value on the county's 2021 records (float) -OCPAAssessedValue2021: The Assessed Value on the county's 2021 records (float), AKA what homeowners are taxed on -Notes: any notes on any of the homes (str)

    Note that while the dataset is exhaustive in that it has all of the houses, some homes are missing some columns, typically because a home did not feature a estimate on a site or the one home not found on the property appraiser's site. This also is therefore not a randomized dataset, so the only population of homes that it can be used to infer on are those within this specific portion of the neighborhood. Personally, I am going to use the dataset to practice a couple of aspects of real-world data: Cleaning, Imputing, and Exploratory Data Analysis. Mainly, I want to compare different approaches to filling in the missing values of the dataset, then do some Model Building with some additional Dimensionality Reduction.

  18. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Malaysia, Kazakhstan, South Sudan, Tonga, Congo (Democratic Republic of the), Iraq, Holy See, Australia, Spain, Kuwait
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  19. Live tables on social housing sales

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Live tables on social housing sales [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-social-housing-sales
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    The tables below provide statistics on the sales of social housing stock – whether owned by local authorities or private registered providers. The most common of these sales are by the Right to Buy (and preserved Right to Buy) scheme and there are separate tables for sales under that scheme.

    The tables for Right to Buy, tables 691, 692 and 693, are now presented in annual versions to reflect changes to the data collection following consultation. The previous quarterly tables can be found in the discontinued tables section below.

    From April 2005 to March 2021 there are quarterly official statistics on Right to Buy sales – these are available in the quarterly version of tables 691, 692 and 693. From April 2021 onwards, following a consultation with local authorities, the quarterly data on Right to Buy sales are management information and not subject to the same quality assurance as official statistics and should not be treated the same as official statistics. These data are presented in tables in the ‘Right to Buy sales: management information’ below.

    Social housing sales

    https://assets.publishing.service.gov.uk/media/6851346d514cf0979e987662/LT_678.ods">Table 678: annual social housing sales by scheme for England

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">14.4 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    Right to Buy sales

    https://assets.publishing.service.gov.uk/media/686272e81c735341c2111ae0/LT_691.ods">Table 691 annual: Right to Buy sales, by local authority

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">152 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisa
    
  20. Wildfire Risk to Communities Building Count

    • s.cnmilf.com
    • geodata.fnai.org
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Wildfire Risk to Communities Building Count [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/wildfire-risk-to-communities-building-count-image-service
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the _location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ministry of Housing, Communities and Local Government (2025). Live tables on housing supply: indicators of new supply [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-house-building
Organization logo

Live tables on housing supply: indicators of new supply

Explore at:
131 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 20, 2025
Dataset provided by
GOV.UKhttp://gov.uk/
Authors
Ministry of Housing, Communities and Local Government
Description

Local authorities compiling this data or other interested parties may wish to see notes and definitions for house building which includes P2 full guidance notes.

Live tables

Data from live tables 253 and 253a is also published as http://opendatacommunities.org/def/concept/folders/themes/house-building" class="govuk-link">Open Data (linked data format).

https://assets.publishing.service.gov.uk/media/68541eb5a3a282804858153b/LiveTable213.ods">Table 213: permanent dwellings started and completed, by tenure, England (quarterly)

 <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">26.7 KB</span></p>



  <p class="gem-c-attachment_metadata">
   This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format

https://assets.publishing.service.gov.uk/media/68541ee7a3a282804858153c/LiveTable217.ods">Table 217: permanent dwellings started and completed by tenure and region (quarterly)

 <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">113 KB</span></p>



  <p class="gem-c-attachment_metadata">
   This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format

Search
Clear search
Close search
Google apps
Main menu