Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Facebook
TwitterEstimated number of persons by quarter of a year and by year, Canada, provinces and territories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ontario by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ontario. The dataset can be utilized to understand the population distribution of Ontario by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ontario. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ontario.
Key observations
Largest age group (population): Male # 30-34 years (8,023) | Female # 25-29 years (8,422). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ontario Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Ontario population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Ontario across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Ontario was 182,457, a 1.08% increase year-by-year from 2022. Previously, in 2022, Ontario population was 180,500, an increase of 1.25% compared to a population of 178,272 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Ontario increased by 23,788. In this period, the peak population was 182,457 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ontario Population by Year. You can refer the same here
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual population projections, from 2024 to 2051. These datasets include population projections by age and gender organized by geography: * Projections for Ontario * Projections for each of the 6 regions * Projections for each of the 49 census divisions * Projections for each of the 34 public health units * Projections for each of the 9 Ministry of Children, Community and Social Services’ Service Delivery Division (SDD) regions For Ontario only, the projected annual components of demographic change are provided for the reference, low- and high-growth scenarios. For all other geographies, only the reference scenario is produced.
Facebook
TwitterAnnual population estimates by marital status or legal marital status, age and sex, Canada, provinces and territories.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
People who have been granted permanent resident status in Canada. Please note that in these datasets, the figures have been suppressed or rounded to prevent the identification of individuals when the datasets are compiled and compared with other publicly available statistics. Values between 0 and 5 are shown as “--“ and all other values are rounded to the nearest multiple of 5. This may result to the sum of the figures not equating to the totals indicated.
Facebook
TwitterThe 1881 Canadian census database is a 100% sample of the 1881 Canadian census, including 4.3 million cases. Since this database covers the entire enumerated Canadian population in 1881, it is one of our most important resources for the study of social and economic organization during Canada 's formative period.
Facebook
TwitterThis table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ontario by race. It includes the population of Ontario across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Ontario across relevant racial categories.
Key observations
The percent distribution of Ontario population by race (across all racial categories recognized by the U.S. Census Bureau): 29.40% are white, 6.43% are Black or African American, 1.87% are American Indian and Alaska Native, 8.55% are Asian, 0.34% are Native Hawaiian and other Pacific Islander, 28.75% are some other race and 24.66% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ontario Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterStatistics Canada publishes monthly labour force statistics for all Canadian Census Metropolitan Areas (CMAs) and provinces. In addition, the City of Toronto purchases a special run from Statistics Canada of Labour Force Survey (LFS) data for city of Toronto residents (i.e. separate from the rest of the Toronto CMA). LFS data are collected by place of residence, and therefore city of Toronto's "employment" represents "employed residents" and not "jobs" in the city of Toronto. There are more jobs in the city of Toronto than employed city of Toronto residents. In this LFS database, you will find 22 monthly tables and 28 annual tables. Most of the tables contain data for five geographies: city of Toronto, Toronto CMA, Toronto/Hamilton/Oshawa CMAs, Ontario and Canada ( see attachment Table of Contents below a full description ). LFS data in the IVT tables are not seasonally adjusted. Top level seasonally adjusted LFS data are available in our monthly Toronto Economic Bulletin on Open Data. LFS is based on a monthly sample of approximately 2,800 households in the Toronto CMA, about half of the sample is from the city of Toronto; therefore, estimates will vary from the results of a complete census. LFS follows a rotating panel sample design, in which households remain in the sample for six consecutive months. The total sample consists of six representative sub-samples of panels, and each month a panel is replaced after completing its six month stay in the survey. Outgoing households are replaced by households in the same or similar area. This results in a five-sixths month-to-month sample overlap, which makes the design efficient for estimating month-to-month changes. The rotation after six months prevents undue respondent burden for households that are selected for the survey ( see attachment Guide to the Labour Force Survey for more information). Upon reviewing the data, you will see that at least some cells in the IVT tables have been suppressed. For confidentiality reasons, Statistics Canada suppresses Labour Force Survey data for any cell that corresponds to less than 1,500 persons. At the beginning of 2015, Statistics Canada substantially changed the methodology used to produce LFS population estimates for the city of Toronto. These changes have resulted in large and inexplicable swings in population and related counts, which are not real. However, the unemployment and participation rates for city residents showed very little change in this revision. The red dots in the chart above represents Statistics Canada's Annual Demographics estimates for the populations of the city of Toronto, age 15 and over. These are only estimates, but they are generally accepted as the most accurate estimates for the city's population. (Source: https://www150.statcan.gc.ca/n1/pub/91-214-x/91-214-x2018000-eng.htm). The most recent Statistics Canada population estimate for the city of Toronto is for July 1, 2015; therefore, we have to use projections thereafter. There are several population projections for the city. The projection that EDC staff has chosen to use for rebasing city of Toronto LFS data is the Ontario Ministry of Finance Population Projections 2017-2041 and downloaded June, 2017 from http://www.fin.gov.on.ca/en/economy/demographics/projections/ Please see attachment Rebased Labour Force Survey for City of Toronto below for annual adjustment factors, monthly adjustment factors and an example of how to rebase the absolute numbers for the city of Toronto.
Facebook
TwitterHousing Assessment Resource Tools (HART) This dataset contains 2 tables and 5 files which draw upon data from the 2021 Census of Canada. The tables are a custom order and contain data pertaining to older adults and housing need. The 2 tables have 6 dimensions in common and 1 dimension that is unique to each table. Table 1's unique dimension is the "Ethnicity / Indigeneity status" dimension which contains data fields related to visible minority and Indigenous identity within the population in private households. Table 2's unique dimension is "Structural type of dwelling and Period of Construction" which contains data fields relating to the structural type and period of construction of the dwelling. Each of the two tables is then split into multiple files based on geography. Table 1 has two files: Table 1.1 includes Canada, Provinces and Territories (14 geographies), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); and Table 1.2 includes Canada and the CMAs of Canada (44). Table 2 has three files: Table 2.1 includes Canada, Provinces and Territories (14), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); Table 2.2 includes Canada and the CMAs of Canada excluding Ontario and Quebec (20 geographies); and Table 2.3 includes Canada and the CMAs of Canada that are in Ontario and Quebec (25 geographies). The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia) as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), as a whole as well as all census divisions (CDs) within the 3 territories - All 43 census metropolitan areas (CMAs) in Canada Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Universe: Full Universe: Population aged 55 years and over in owner and tenant households with household total income greater than zero in non-reserve non-farm private dwellings. Definition of Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances. Data Fields: Table 1: Age / Gender (12) 1. Total – Population 55 years and over 2. Men+ 3. Women+ 4. 55 to 64 years 5. Men+ 6. Women+ 7. 65+ years 8. Men+ 9. Women+ 10. 85+ 11. Men+ 12. Women+ Housing indicators (13) 1. Total – Private Households by core housing need status 2. Households below one standard only...
Facebook
TwitterThis table shows the 2021 population and dwelling counts for reported forward sortation areas.
Facebook
TwitterCategorized library statistical reports for the population group of 5,001 to 15,000.
Facebook
TwitterIncome of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
Facebook
TwitterComponents of population growth, annual: births, deaths, immigrants, emigrants, returning emigrants, net temporary emigrants, net interprovincial migration, net non-permanent residents, residual deviation.
Facebook
TwitterThis dataset displays the industry employment by age groups for Canada. This information is displayed on the census division level, and is broke up into two datasets (due to the file size). The first dataset includes: Ontario, Quebec, Prince Edward Island, New Brunswick, Nova Scotia, Newfoundland, Nunavut, Northwest Territories, and Yukon. The Second includes: British Columbia, Alberta, Saskatchewan, and Manitoba. Industry Employment is divided further by industry type. This data is derived from the Canadian Census of 2006, and made available through Statistics Canada. To find other Canadian Census Data files please search for: Canada-census.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools. How Are We Protecting Privacy? Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented. * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up. The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy. The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible. This information is also available on the Ministry of Education's School Information Finder website by individual school. Descriptions for some of the data types can be found in our glossary. School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Canada remained unchanged at 7.10 percent in September. This dataset provides - Canada Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Ontario population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Ontario. The dataset can be utilized to understand the population distribution of Ontario by age. For example, using this dataset, we can identify the largest age group in Ontario.
Key observations
The largest age group in Ontario, CA was for the group of age 30 to 34 years years with a population of 15,629 (8.76%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Ontario, CA was the 85 years and over years with a population of 1,731 (0.97%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ontario Population by Age. You can refer the same here
Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.