Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of the article is to compare health system outcomes in the BRICS countries, assess the trends of their changes in 2000−2017, and verify whether they are in any way correlated with the economic context. The indicators considered were: nominal and per capita current health expenditure, government health expenditure, gross domestic product (GDP) per capita, GDP growth, unemployment, inflation, and composition of GDP. The study covered five countries of the BRICS group over a period of 18 years. We decided to characterize countries covered with a dataset of selected indicators describing population health status, namely: life expectancy at birth, level of immunization, infant mortality rate, maternal mortality ratio, and tuberculosis case detection rate. We constructed a unified synthetic measure depicting the performance of individual health systems in terms of their outcomes with a single numerical value. Descriptive statistical analysis of quantitative traits consisted of the arithmetic mean (xsr), standard deviation (SD), and, where needed, the median. The normality of the distribution of variables was tested with the Shapiro–Wilk test. Spearman's rho and Kendall tau rank coefficients were used for correlation analysis between measures. The correlation analyses have been supplemented with factor analysis. We found that the best results in terms of health care system performance were recorded in Russia, China, and Brazil. India and South Africa are noticeably worse. However, the entire group performs visibly worse than the developed countries. The health system outcomes appeared to correlate on a statistically significant scale with health expenditures per capita, governments involvement in health expenditures, GDP per capita, and industry share in GDP; however, these correlations are relatively weak, with the highest strength in the case of government's involvement in health expenditures and GDP per capita. Due to weak correlation with economic background, other factors may play a role in determining health system outcomes in BRICS countries. More research should be recommended to find them and determine to what extent and how exactly they affect health system outcomes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bolivia BO: Net Official Flows from UN Agencies: UNFPA data was reported at 1.969 USD mn in 2022. This records an increase from the previous number of 1.873 USD mn for 2021. Bolivia BO: Net Official Flows from UN Agencies: UNFPA data is updated yearly, averaging 1.180 USD mn from Dec 1977 (Median) to 2022, with 44 observations. The data reached an all-time high of 3.200 USD mn in 2002 and a record low of 0.080 USD mn in 1987. Bolivia BO: Net Official Flows from UN Agencies: UNFPA data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bolivia – Table BO.World Bank.WDI: Defense and Official Development Assistance. Net official flows from UN agencies are the net disbursements of total official flows from the UN agencies. Total official flows are the sum of Official Development Assistance (ODA) or official aid and Other Official Flows (OOF) and represent the total disbursements by the official sector at large to the recipient country. Net disbursements are gross disbursements of grants and loans minus repayments of principal on earlier loans. ODA consists of loans made on concessional terms (with a grant element of at least 25 percent, calculated at a rate of discount of 10 percent) and grants made to promote economic development and welfare in countries and territories in the DAC list of ODA recipients. Official aid refers to aid flows from official donors to countries and territories in part II of the DAC list of recipients: more advanced countries of Central and Eastern Europe, the countries of the former Soviet Union, and certain advanced developing countries and territories. Official aid is provided under terms and conditions similar to those for ODA. Part II of the DAC List was abolished in 2005. The collection of data on official aid and other resource flows to Part II countries ended with 2004 data. OOF are transactions by the official sector whose main objective is other than development-motivated, or, if development-motivated, whose grant element is below the 25 per cent threshold which would make them eligible to be recorded as ODA. The main classes of transactions included here are official export credits, official sector equity and portfolio investment, and debt reorganization undertaken by the official sector at nonconcessional terms (irrespective of the nature or the identity of the original creditor). UN agencies are United Nations includes the United Nations Children’s Fund (UNICEF), United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), World Food Programme (WFP), International Fund for Agricultural Development (IFAD), United Nations Development Programme(UNDP), United Nations Population Fund (UNFPA), United Nations Refugee Agency (UNHCR), Joint United Nations Programme on HIV/AIDS (UNAIDS), United Nations Regular Programme for Technical Assistance (UNTA), United Nations Peacebuilding Fund (UNPBF), International Atomic Energy Agency (IAEA), World Health Organization (WHO), United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO), International Labour Organization (ILO), United Nations Environment Programme (UNEP), World Tourism Organization (UNWTO), United Nations Institute for Disarmament Research (UNIDIR), United Nations Capital Development Fund (UNCDF), WHO-Strategic Preparedness and Response Plan (SPRP), United Nations Women (UNWOMEN), Covid-19 Response and Recovery Multi-Partner Trust Fund (UNCOVID), Joint Sustainable Development Goals Fund (SDGFUND), Central Emergency Response Fund (CERF), WTO-International Trade Centre (WTO-ITC), United National Conference on Trade and Development (UNCTAD), and United Nations Industrial Development Organization (UNIDO). Data are in current U.S. dollars.;Development Assistance Committee of the Organisation for Economic Co-operation and Development, Geographical Distribution of Financial Flows to Developing Countries, Development Co-operation Report, and International Development Statistics database. Data are available online at: https://data-explorer.oecd.org/.;Sum;
"Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."
The population of Latin America and the Caribbean increased from 175 million in 1950 to 515 million in 2000. Where did this growth occur? What is the magnitude of change in different places? How can we visualize the geographic dimensions of population change in Latin America and the Caribbean? We compiled census and other public domain information to analyze both temporal and geographic changes in population in the region. Our database includes population totals for over 18,300 administrative districts within Latin America and the Caribbean. Tabular census data was linked to an administrative division map of the region and handled in a geographic information system. We transformed vector population maps to raster surfaces to make the digital maps comparable with other commonly available geographic information. Validation and error-checking analyses were carried out to compare the database with other sources of population information. The digital population maps created in this project have been put in the public domain and can be downloaded from our website. The Latin America and Caribbean map is part of a larger multi-institutional effort to map population in developing countries. This is the third version of the Latin American and Caribbean population database and it contains new data from the 2000 round of censuses and new and improved accessibility surfaces for creating the raster maps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
By the middle of the 1990s, Indonesia had enjoyed over three decades of remarkable social, economic, and demographic change and was on the cusp of joining the middle-income countries. Per capita income had risen more than fifteenfold since the early 1960s, from around US$50 to more than US$800. Increases in educational attainment and decreases in fertility and infant mortality over the same period reflected impressive investments in infrastructure. In the late 1990s the economic outlook began to change as Indonesia was gripped by the economic crisis that affected much of Asia. In 1998 the rupiah collapsed, the economy went into a tailspin, and gross domestic product contracted by an estimated 12-15%-a decline rivaling the magnitude of the Great Depression. The general trend of several decades of economic progress followed by a few years of economic downturn masks considerable variation across the archipelago in the degree both of economic development and of economic setbacks related to the crisis. In part this heterogeneity reflects the great cultural and ethnic diversity of Indonesia, which in turn makes it a rich laboratory for research on a number of individual- and household-level behaviors and outcomes that interest social scientists. The Indonesia Family Life Survey is designed to provide data for studying behaviors and outcomes. The survey contains a wealth of information collected at the individual and household levels, including multiple indicators of economic and non-economic well-being: consumption, income, assets, education, migration, labor market outcomes, marriage, fertility, contraceptive use, health status, use of health care and health insurance, relationships among co-resident and non- resident family members, processes underlying household decision-making, transfers among family members and participation in community activities. In addition to individual- and household-level information, the IFLS provides detailed information from the communities in which IFLS households are located and from the facilities that serve residents of those communities. These data cover aspects of the physical and social environment, infrastructure, employment opportunities, food prices, access to health and educational facilities, and the quality and prices of services available at those facilities. By linking data from IFLS households to data from their communities, users can address many important questions regarding the impact of policies on the lives of the respondents, as well as document the effects of social, economic, and environmental change on the population. The Indonesia Family Life Survey complements and extends the existing survey data available for Indonesia, and for developing countries in general, in a number of ways. First, relatively few large-scale longitudinal surveys are available for developing countries. IFLS is the only large-scale longitudinal survey available for Indonesia. Because data are available for the same individuals from multiple points in time, IFLS affords an opportunity to understand the dynamics of behavior, at the individual, household and family and community levels. In IFLS1 7,224 households were interviewed, and detailed individual-level data were collected from over 22,000 individuals. In IFLS2, 94.4% of IFLS1 households were re-contacted (interviewed or died). In IFLS3 the re-contact rate was 95.3% of IFLS1 households. Indeed nearly 91% of IFLS1 households are complete panel households in that they were interviewed in all three waves, IFLS1, 2 and 3. These re-contact rates are as high as or higher than most longitudinal surveys in the United States and Europe. High re-interview rates were obtained in part because we were committed to tracking and interviewing individuals who had moved or split off from the origin IFLS1 households. High re-interview rates contribute significantly to data quality in a longitudinal survey because they lessen the risk of bias due to nonrandom attrition in studies using the data. Second, the multipurpose nature of IFLS instruments means that the data support analyses of interrelated issues not possible with single-purpose surveys. For example, the availability of data on household consumption together with detailed individual data on labor market outcomes, health outcomes and on health program availability and quality at the community level means that one can examine the impact of income on health outcomes, but also whether health in turn affects incomes. Third, IFLS collected both current and retrospective information on most topics. With data from multiple points of time on current status and an extensive array of retrospective information about the lives of respondents, analysts can relate dynamics to events that occurred in the past. For example, changes in labor outcomes in recent years can be explored as a function of earlier decisions about schooling and work. Fourth, IFLS collected extensive measures of health status, including self-reported measures of general health status, morbidity experience, and physical assessments conducted by a nurse (height, weight, head circumference, blood pressure, pulse, waist and hip circumference, hemoglobin level, lung capacity, and time required to repeatedly rise from a sitting position). These data provide a much richer picture of health status than is typically available in household surveys. For example, the data can be used to explore relationships between socioeconomic status and an array of health outcomes. Fifth, in all waves of the survey, detailed data were collected about respondents¹ communities and public and private facilities available for their health care and schooling. The facility data can be combined with household and individual data to examine the relationship between, for example, access to health services (or changes in access) and various aspects of health care use and health status. Sixth, because the waves of IFLS span the period from several years before the economic crisis hit Indonesia, to just prior to it hitting, to one year and then three years after, extensive research can be carried out regarding the living conditions of Indonesian households during this very tumultuous period. In sum, the breadth and depth of the longitudinal information on individuals, households, communities, and facilities make IFLS data a unique resource for scholars and policymakers interested in the processes of economic development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Macedonia MK: Net Official Flows from UN Agencies: UNICEF data was reported at 0.640 USD mn in 2016. This records a decrease from the previous number of 0.980 USD mn for 2015. Macedonia MK: Net Official Flows from UN Agencies: UNICEF data is updated yearly, averaging 0.720 USD mn from Dec 1995 (Median) to 2016, with 22 observations. The data reached an all-time high of 1.360 USD mn in 1996 and a record low of 0.480 USD mn in 2000. Macedonia MK: Net Official Flows from UN Agencies: UNICEF data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Macedonia – Table MK.World Bank: Defense and Official Development Assistance. Net official flows from UN agencies are the net disbursements of total official flows from the UN agencies. Total official flows are the sum of Official Development Assistance (ODA) or official aid and Other Official Flows (OOF) and represent the total disbursements by the official sector at large to the recipient country. Net disbursements are gross disbursements of grants and loans minus repayments of principal on earlier loans. ODA consists of loans made on concessional terms (with a grant element of at least 25 percent, calculated at a rate of discount of 10 percent) and grants made to promote economic development and welfare in countries and territories in the DAC list of ODA recipients. Official aid refers to aid flows from official donors to countries and territories in part II of the DAC list of recipients: more advanced countries of Central and Eastern Europe, the countries of the former Soviet Union, and certain advanced developing countries and territories. Official aid is provided under terms and conditions similar to those for ODA. Part II of the DAC List was abolished in 2005. The collection of data on official aid and other resource flows to Part II countries ended with 2004 data. OOF are transactions by the official sector whose main objective is other than development-motivated, or, if development-motivated, whose grant element is below the 25 per cent threshold which would make them eligible to be recorded as ODA. The main classes of transactions included here are official export credits, official sector equity and portfolio investment, and debt reorganization undertaken by the official sector at nonconcessional terms (irrespective of the nature or the identity of the original creditor).). UN agencies are United Nations includes the United Nations Children’s Fund (UNICEF), United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), World Food Programme (WFP), International Fund for Agricultural Development (IFAD), United Nations Development Programme(UNDP), United Nations Population Fund (UNFPA), United Nations Refugee Agency (UNHCR), Joint United Nations Programme on HIV/AIDS (UNAIDS), United Nations Regular Programme for Technical Assistance (UNTA), , United Nations Peacebuilding Fund (UNPBF), International Atomic Energy Agency (IAEA), Wolrd Health Organization (WHO), United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO), and International Labour Organization (ILO). Data are in current U.S. dollars.; ; Development Assistance Committee of the Organisation for Economic Co-operation and Development, Geographical Distribution of Financial Flows to Developing Countries, Development Co-operation Report, and International Development Statistics database. Data are available online at: www.oecd.org/dac/stats/idsonline.; Sum;
Views on the situation of women in developing countries. Topics: gender equality improves the way societies function; all aid programmes for developing countries should take specific account of women’s rights and equal opportunities for all; more women in positions of political influence or power in developing countries make a difference in the following areas: preventing conflict and war, living conditions of people, respect for human rights; the following issues affect women and men equally, women more than men or men more than women: hunger and malnutrition, physical violence, problems in accessing education, HIV/AIDS, lack of an income/job, basic human rights not respected. Demography: age; sex; age at end of education; occupation; professional position; region; type of community; own a mobile phone and fixed (landline) phone; number of persons in the household aged 15 years and older (household size). Meinung zur Lage von Frauen in Entwicklungsländern. Themen: Gleichstellung der Geschlechter verbessert die Funktionsweise einer Gesellschaft; Forderung nach Berücksichtigung von Frauenrechten und Chancengleichheit in allen Hilfsprogrammen für Entwicklungsländer; erwartete Veränderungen in ausgewählten Bereichen durch einen größeren Frauenanteil in Machtpositionen bzw. mit politischem Einfluss: Vermeidung von Konflikten und Kriegen, Lebensbedingungen der Menschen, Achtung der Menschenrechte; folgende Probleme betreffen Frauen und Männer gleichermaßen, eher Frauen als Männer oder eher Männer als Frauen: Hunger und Unterernährung, körperliche Gewalt, Probleme beim Zugang zu Bildung, HIV/AIDS, Mangel an Einkommen/Arbeit, Missachtung grundlegender Menschenrechte. Demographie: Geschlecht; Alter; Alter bei Beendigung der Schulbildung; Beruf; berufliche Position; Region; Urbanisierungsgrad; Besitz von Mobiltelefon und Festnetz-Telefon; Anzahl der Personen ab 15 Jahren im Haushalt (Haushaltsgröße). Probability: MultistageProbability.Multistage Wahrscheinlichkeitsauswahl: Mehrstufige ZufallsauswahlProbability.Multistage Telephone interview: Computer-assisted (CATI)Interview.Telephone.CATI
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The burden of animal disease is widespread globally and is especially severe for developing countries dependent on livestock production. Ethiopia has the largest livestock population in Africa and the second-largest human population on the continent. Ethiopia is one of the fastest-growing economies in Africa; however, much of the population still lives in extreme poverty, and most households depend on agriculture. Animal disease negatively affects domestic livestock production and limits growth potential across the domestic agricultural supply chain. This research investigates the economic effects of livestock disease burden in Ethiopia by employing a computable general equilibrium model in tandem with animal health loss estimates from a compartmental livestock population model. Two scenarios for disease burden are simulated to understand the effects of improved animal health on domestic production, prices, trade, gross domestic product (GDP), and economic welfare in Ethiopia. Results show that improved animal health may increase Ethiopian GDP by up to 3.6%, which improves national welfare by approximately $US 2.5 billion. This research illustrates the economic effects of improved livestock health, which is critical for Ethiopian households and the national economy.
This paper presents the largest globally comparable panel database of education quality. The database includes 163 countries and regions over 1965-2015. The globally comparable achievement outcomes were constructed by linking standardized, psychometrically-robust international and regional achievement tests. The paper contributes to the literature in the following ways: (1) it is the largest and most current globally comparable data set, covering more than 90 percent of the global population; (2) the data set includes 100 developing areas and the most developing countries included in such a data set to date -- the countries that have the most to gain from the potential benefits of a high-quality education; (3) the data set contains credible measures of globally comparable achievement distributions as well as mean scores; (4) the data set uses multiple methods to link assessments, including mean and percentile linking methods, thus enhancing the robustness of the data set; (5) the data set includes the standard errors for the estimates, enabling explicit quantification of the degree of reliability of each estimate; and (6) the data set can be disaggregated across gender, socioeconomic status, rural/urban, language, and immigration status, thus enabling greater precision and equity analysis. A first analysis of the data set reveals a few important trends: learning outcomes in developing countries are often clustered at the bottom of the global scale; although variation in performance is high in developing countries, the top performers still often perform worse than the bottom performers in developed countries; gender gaps are relatively small, with high variation in the direction of the gap; and distributions reveal meaningfully different trends than mean scores, with less than 50 percent of students reaching the global minimum threshold of proficiency in developing countries relative to 86 percent in developed countries. The paper also finds a positive and significant association between educational achievement and economic growth. The data set can be used to benchmark global progress on education quality, as well as to uncover potential drivers of education quality, growth, and development.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Chronic child malnutrition (stunting among children under 5 years of age) represents a good proxy of rural poverty and food insecurity (FAO 2008 and FAO 2003) and, by overlaying stunting rate and population density, this map aims at showing poor population distribution (person/sq km) in developing countries.
Supplemental Information:
Input data used to prepare this map are: -Global Administrative Unit Layers (GAUL 2008) -Stunting data and population density around year 2000, at 5 arc-min: Food Insecurity, Poverty and Environment Global GIS Database (FGGD) (FAO, 2007)
Contact points:
Metadata Contact: GIS Manager
Resource constraints:
copyright
Online resources:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Net Official Flows from UN Agencies: UNTA data was reported at 0.980 USD mn in 2008. This records a decrease from the previous number of 4.800 USD mn for 2007. Nigeria NG: Net Official Flows from UN Agencies: UNTA data is updated yearly, averaging 1.740 USD mn from Dec 1969 (Median) to 2008, with 40 observations. The data reached an all-time high of 5.140 USD mn in 2005 and a record low of 0.210 USD mn in 1980. Nigeria NG: Net Official Flows from UN Agencies: UNTA data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Defense and Official Development Assistance. Net official flows from UN agencies are the net disbursements of total official flows from the UN agencies. Total official flows are the sum of Official Development Assistance (ODA) or official aid and Other Official Flows (OOF) and represent the total disbursements by the official sector at large to the recipient country. Net disbursements are gross disbursements of grants and loans minus repayments of principal on earlier loans. ODA consists of loans made on concessional terms (with a grant element of at least 25 percent, calculated at a rate of discount of 10 percent) and grants made to promote economic development and welfare in countries and territories in the DAC list of ODA recipients. Official aid refers to aid flows from official donors to countries and territories in part II of the DAC list of recipients: more advanced countries of Central and Eastern Europe, the countries of the former Soviet Union, and certain advanced developing countries and territories. Official aid is provided under terms and conditions similar to those for ODA. Part II of the DAC List was abolished in 2005. The collection of data on official aid and other resource flows to Part II countries ended with 2004 data. OOF are transactions by the official sector whose main objective is other than development-motivated, or, if development-motivated, whose grant element is below the 25 per cent threshold which would make them eligible to be recorded as ODA. The main classes of transactions included here are official export credits, official sector equity and portfolio investment, and debt reorganization undertaken by the official sector at nonconcessional terms (irrespective of the nature or the identity of the original creditor).). UN agencies are United Nations includes the United Nations Children’s Fund (UNICEF), United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), World Food Programme (WFP), International Fund for Agricultural Development (IFAD), United Nations Development Programme(UNDP), United Nations Population Fund (UNFPA), United Nations Refugee Agency (UNHCR), Joint United Nations Programme on HIV/AIDS (UNAIDS), United Nations Regular Programme for Technical Assistance (UNTA), , United Nations Peacebuilding Fund (UNPBF), International Atomic Energy Agency (IAEA), Wolrd Health Organization (WHO), United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO), and International Labour Organization (ILO). Data are in current U.S. dollars.; ; Development Assistance Committee of the Organisation for Economic Co-operation and Development, Geographical Distribution of Financial Flows to Developing Countries, Development Co-operation Report, and International Development Statistics database. Data are available online at: www.oecd.org/dac/stats/idsonline.; Sum;
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Providing daily updates of global economic developments, with coverage of high income- as well as developing countries. Daily data updates are provided for exchange rates, equity markets, and emerging market bond indices. Monthly data coverage (updated daily and populated upon availability) is provided for consumer prices, high-tech market indicators, industrial production and merchandise trade.
This is a dataset hosted by the World Bank. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore the World Bank using Kaggle and all of the data sources available through the World Bank organization page!
This dataset is maintained using the World Bank's APIs and Kaggle's API.
Cover photo by Patrick Hendry on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The datasets present gridded meteorological drought event and country-based drought risk via combing multiple drought indices and socio-economic data in the developing countries of Eurasia. A basic gridded dataset of the drought events during 1950–2015 is extracted from three drought indices, i.e., the self-calibrating Palmer Drought Severity Index, the Standardized Precipitation Index, and the Standardized Precipitation Evapotranspiration Index. The second-level dataset, i.e., drought risk dataset, is then produced as the product of drought hazard, exposure and vulnerability during 2000–2015. Drought exposure chooses population and livestock density, agricultural land and water stress as its indicators, and drought vulnerability composites multiple social, economic and infrastructural factors.
Series Name: Health worker density by type of occupation (per 10 000 population)Series Code: SH_MED_HEAWORRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.c.1: Health worker density and distributionTarget 3.c: Substantially increase health financing and the recruitment, development, training and retention of the health workforce in developing countries, especially in least developed countries and small island developing StatesGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Improving health is central to the Millennium Development Goals, and the public sector is the main provider of health care in developing countries. To reduce inequities, many countries have emphasized primary health care, including immunization, sanitation, access to safe drinking water, and safe motherhood initiatives. Data here cover health systems, disease prevention, reproductive health, nutrition, and population dynamics. Data are from the United Nations Population Division, World Health Organization, United Nations Children's Fund, the Joint United Nations Programme on HIV/AIDS, and various other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of the article is to compare health system outcomes in the BRICS countries, assess the trends of their changes in 2000−2017, and verify whether they are in any way correlated with the economic context. The indicators considered were: nominal and per capita current health expenditure, government health expenditure, gross domestic product (GDP) per capita, GDP growth, unemployment, inflation, and composition of GDP. The study covered five countries of the BRICS group over a period of 18 years. We decided to characterize countries covered with a dataset of selected indicators describing population health status, namely: life expectancy at birth, level of immunization, infant mortality rate, maternal mortality ratio, and tuberculosis case detection rate. We constructed a unified synthetic measure depicting the performance of individual health systems in terms of their outcomes with a single numerical value. Descriptive statistical analysis of quantitative traits consisted of the arithmetic mean (xsr), standard deviation (SD), and, where needed, the median. The normality of the distribution of variables was tested with the Shapiro–Wilk test. Spearman's rho and Kendall tau rank coefficients were used for correlation analysis between measures. The correlation analyses have been supplemented with factor analysis. We found that the best results in terms of health care system performance were recorded in Russia, China, and Brazil. India and South Africa are noticeably worse. However, the entire group performs visibly worse than the developed countries. The health system outcomes appeared to correlate on a statistically significant scale with health expenditures per capita, governments involvement in health expenditures, GDP per capita, and industry share in GDP; however, these correlations are relatively weak, with the highest strength in the case of government's involvement in health expenditures and GDP per capita. Due to weak correlation with economic background, other factors may play a role in determining health system outcomes in BRICS countries. More research should be recommended to find them and determine to what extent and how exactly they affect health system outcomes.