Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Southern California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people '€“ one working adult parent and three dependent children '€“ has a different poverty threshold than a household comprised of four unrelated independent adults. Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables.
Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021.
This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data.
This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score.
This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4.
The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's Asian American population. The variable ASIANALN records all individuals who select Asian as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with the Asian race alone. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as ASIANALN alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as ASIANALN alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of ASIANALN individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then ASIANALN individuals are highly concentrated locally.
This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's Black/African American population. The variable BLACKALN records all individuals who select black or African American as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with black race alone. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as Black/African American alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as Black/African American alone. Example: if 5.2% of people in a block group identify as BLACKALN, the block group has twice the proportion of BLACKALN individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then BLACKALN individuals are highly concentrated locally.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's Black/African American population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South El Monte by race. It includes the distribution of the Non-Hispanic population of South El Monte across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South El Monte across relevant racial categories.
Key observations
Of the Non-Hispanic population in South El Monte, the largest racial group is Asian alone with a population of 3,28 (81.67% of the total Non-Hispanic population).
https://i.neilsberg.com/ch/south-el-monte-ca-population-by-race-and-ethnicity.jpeg" alt="South El Monte Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South El Monte Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South Pasadena by race. It includes the distribution of the Non-Hispanic population of South Pasadena across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South Pasadena across relevant racial categories.
Key observations
Of the Non-Hispanic population in South Pasadena, the largest racial group is White alone with a population of 9,904 (47.41% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Pasadena Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's American Indian population. The variable AIAN_ALN_AND_MULTIRACEAIANALN includes BOTH individuals who select American Indian or Alaska Native as their sole racial identity (they only identify as American Indian), AND individuals who select American Indian / Alaska Native as one of two or more racial identities (they partly identify as American Indian) in response to the Census questionnaire. IMPORTANT: this self reported ancestry and Tribal membership are distinct identities and one does not automatically imply the other. These data should not be interpreted as a distribution of "Tribal people." Numerous Rancherias in the Southern California region account for the wide distribution of very to extremely high concentrations of American Indians. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as American Indian / Alaska Native alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as American Indian / Alaska native alone. Example: if 5.2% of people in a block group identify as AIANALN, the block group has twice the proportion of AIANALN individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then AIANALN individuals are highly concentrated locally.
Power Outages by County
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in California (CAPOP) from 1900 to 2024 about residents, CA, population, and USA.
https://www.california-demographics.com/terms_and_conditionshttps://www.california-demographics.com/terms_and_conditions
A dataset listing California counties by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South San Francisco by race. It includes the distribution of the Non-Hispanic population of South San Francisco across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South San Francisco across relevant racial categories.
Key observations
Of the Non-Hispanic population in South San Francisco, the largest racial group is Asian alone with a population of 27,324 (61.21% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South San Francisco Population by Race & Ethnicity. You can refer the same here
"The Social Security Administration (SSA) suggested to USC to survey members of the public around these topics: What do people know about Social Security? How do people learn about Social Security and how do they want to learn about Social Security? How do adults use financial products as they age? How do adults make their financial decisions and where do they turn for advice? What are adults' main sources of financial stress? The results of the survey are available at the USC website below after logging in and being granted access by USC."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South Lake Tahoe by race. It includes the distribution of the Non-Hispanic population of South Lake Tahoe across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South Lake Tahoe across relevant racial categories.
Key observations
Of the Non-Hispanic population in South Lake Tahoe, the largest racial group is White alone with a population of 12,617 (82.44% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Lake Tahoe Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Relative concentration of the Southern California region's population that identifies as "Multiracial", EXCEPT those with part-American Indian identity, in response to the Census questionnaire. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identifies as Multiiracial to the proportion of all people that live within the 13,312 census block groups in the Southern California RRK region. People with part-American Indian identity are not included here but are included in the American Indian or Alaska Native Race Alone and Multirace Population, described above.
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
CalEnviroScreen is a mapping tool that helps identify California communities that are most affected by many sources of pollution, and where people are often especially vulnerable to pollution’s effects. CalEnviroScreen uses environmental, health, and socioeconomic information to produce scores for every census tract in the state. The scores are mapped so that different communities can be compared. An area with a high score is one that experiences a much higher pollution burden than areas with low scores. CalEnviroScreen ranks communities based on data that are available from state and federal government sources.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Southern California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people '€“ one working adult parent and three dependent children '€“ has a different poverty threshold than a household comprised of four unrelated independent adults. Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.