74 datasets found
  1. Current Population Survey: Disability Supplement

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Current Population Survey: Disability Supplement [Dataset]. https://catalog.data.gov/dataset/current-population-survey-disability-supplement
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Measures data in specific areas related to the employment of persons with disabilities. Gives labor force participation rates, work history, barriers to employment, and types of workplace accommodations for persons with disabilities.

  2. H

    Disability Statistics Center

    • data.niaid.nih.gov
    Updated Feb 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Disability Statistics Center [Dataset]. http://doi.org/10.7910/DVN/1LHI3O
    Explore at:
    Dataset updated
    Feb 2, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data pertaining to individuals with disabilities. Topics include but are not limited to: people with disabilities’ access to employment, technology, healthcare, and community based services. Background The Disability Statistics Center is based at the Institute for Health and Aging at the University of California, San Francisco (UCSF). The Disability Statistics Center generates reports ranging from employment opportunities, Medicaid home and community-based services, mobility device use, computer and internet use, wheelchair use, vocational rehabilitation, education, medical expenditures, and functional limitations among people with disabilities. User functiona lity Data is presented in report or abstract form and can be downloaded in PDF or HTML formats by clicking on the publications link. All reports and abstracts use United States data. Additional data sources are listed under “Finding Disability Data” and include data from the United States as well as international data. Data Notes The data sources are clearly referenced for each article. The most recent publications are from 2003. There is no indication on the site when the data will be updated.

  3. P

    Population with Disability - 2017

    • data.pompanobeachfl.gov
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Datasets (2020). Population with Disability - 2017 [Dataset]. https://data.pompanobeachfl.gov/dataset/population-with-disability-2017
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    May 20, 2020
    Dataset provided by
    RBENSADOUN_BCGIS
    Authors
    External Datasets
    Description

    The layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.

    Source: U.S. Census Bureau, Table S1810 DISABILITY CHARACTERISTICS, 2013 – 2017 ACS 5-Year Estimates

    Effective Date: December 2018

    Last Update: December 2019

    Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.


  4. V

    Virginia Disability Characteristics by Census Tract (ACS 5-Year)

    • data.virginia.gov
    csv
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Disability Characteristics by Census Tract (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-disability-characteristics-by-census-tract-acs-5-year
    Explore at:
    csv(31160488)Available download formats
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Area covered
    Virginia
    Description

    2013-2023 Virginia Disability Characteristics by Census Tract. Contains estimates and margins of error.

    Special data considerations: Large negative values do exist (more detail below) and should be addressed prior to graphing or aggregating the data. A null value in the estimate means there is no data available for the requested geography.

    A value of -888,888,888 indicates that the estimate or margin of error is not applicable or not available.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table S1810 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  5. f

    Disability (by US Congress) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Disability (by US Congress) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::disability-by-us-congress-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  6. P

    2017 Population with Disability

    • data.pompanobeachfl.gov
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Datasets (2020). 2017 Population with Disability [Dataset]. https://data.pompanobeachfl.gov/dataset/2017-population-with-disability
    Explore at:
    html, geojson, arcgis geoservices rest api, zip, kml, csvAvailable download formats
    Dataset updated
    May 20, 2020
    Dataset provided by
    RBENSADOUN_BCGIS
    Authors
    External Datasets
    Description

    The layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.

    Source: U.S. Census Bureau, Table S1810 DISABILITY CHARACTERISTICS, 2013 – 2017 ACS 5-Year Estimates

    Effective Date: December 2018

    Last Update: December 2019

    Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.


  7. a

    Disability (by Laureus boundary) 2019

    • arc-garc.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Disability (by Laureus boundary) 2019 [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/disability-by-laureus-boundary-2019/explore?showTable=true
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  8. Disability Status of the Civilian Noninstitutionalized Population 2018-2022...

    • covid19-uscensus.hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    • +1more
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Disability Status of the Civilian Noninstitutionalized Population 2018-2022 - COUNTIES [Dataset]. https://covid19-uscensus.hub.arcgis.com/maps/aec2f5b3b70242bfaaa4cbd234ec3c65
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Disability Status of the Civilian Noninstitutionalized Population and Households with 1+ Person with a Disability. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Total Civilian Noninstitutionalized Population - with a disability 65 and over. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02, S2201, S1810 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  9. t

    DISABILITY STATUS OF THE CIVILIAN NONINSTITUTIONALIZED POPULATION -...

    • portal.tad3.org
    Updated Nov 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). DISABILITY STATUS OF THE CIVILIAN NONINSTITUTIONALIZED POPULATION - DP02_MAN_P - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/disability-status-of-the-civilian-noninstitutionalized-population-dp02_man_p
    Explore at:
    Dataset updated
    Nov 18, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES DISABILITY STATUS OF THE CIVILIAN NONINSTITUTIONALIZED POPULATION - DP02 Universe - Total Civilian Noninstitutionalized Population Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 Under the conceptual framework of disability described by the Institute of Medicine (IOM) and the International Classification of Functioning, Disability, and Health (ICF), disability is defined as the product of interactions among individuals’ bodies; their physical, emotional, and mental health; and the physical and social environment in which they live, work, or play. Disability exists where this interaction results in limitations of activities and restrictions to full participation at school, at work, at home, or in the community. For example, disability may exist where a child has difficulty learning because the school cannot accommodate the child’s deafness.

  10. Disability Status of the Civilian Noninstitutionalized Population 2018-2022...

    • hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    • +1more
    Updated Feb 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Disability Status of the Civilian Noninstitutionalized Population 2018-2022 - STATES [Dataset]. https://hub.arcgis.com/maps/USCensus::disability-status-of-the-civilian-noninstitutionalized-population-2018-2022-states
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Disability Status of the Civilian Noninstitutionalized Population and Households with 1+ Person with a Disability. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Total Civilian Noninstitutionalized Population - with a disability 65 and over. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02, S2201, S1810 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  11. h

    population-with-severe-disabilities-receiving-disability-cas-for-african-countries...

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electric Sheep, population-with-severe-disabilities-receiving-disability-cas-for-african-countries [Dataset]. https://huggingface.co/datasets/electricsheepafrica/population-with-severe-disabilities-receiving-disability-cas-for-african-countries
    Explore at:
    Dataset authored and provided by
    Electric Sheep
    Area covered
    Africa
    Description

    license: apache-2.0

      Population with severe disabilities receiving disability cash benefit (%)
    
    
    
    
    
      Dataset Description
    

    This dataset provides country-level data for the indicator "1.3.1 Population with severe disabilities receiving disability cash benefit (%)" across African nations, sourced from the World Health Organization's (WHO) data portal on Sustainable Development Goals (SDGs). The data is presented in a wide format, where each row represents a date (yearly) and each… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/population-with-severe-disabilities-receiving-disability-cas-for-african-countries.

  12. a

    Disability Status of the Civilian Noninstitutionalized Population 2017-2021...

    • mce-data-uscensus.hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Disability Status of the Civilian Noninstitutionalized Population 2017-2021 - STATES [Dataset]. https://mce-data-uscensus.hub.arcgis.com/datasets/disability-status-of-the-civilian-noninstitutionalized-population-2017-2021-states
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Disability Status of the Civilian Noninstitutionalized Population. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Total Civilian Noninstitutionalized Population - with a disability 65 and over. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): DP02, S2201, S1810Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  13. B

    Data from: Disability Data

    • boernetx.opendataportal.us
    csv
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datHere (2024). Disability Data [Dataset]. https://boernetx.opendataportal.us/dataset/disability-data
    Explore at:
    csv(3539), csv(2375)Available download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    datHere
    Description

    Data on disabilities among the population, with insights into types and prevalence.

  14. Iowa Population by Sex, Age and Disability Status (ACS 5-Year Estimates)

    • mydata.iowa.gov
    • s.cnmilf.com
    • +3more
    Updated Jun 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey (2024). Iowa Population by Sex, Age and Disability Status (ACS 5-Year Estimates) [Dataset]. https://mydata.iowa.gov/Community-Demographics/Iowa-Population-by-Sex-Age-and-Disability-Status-A/mbpx-zeqt
    Explore at:
    application/rdfxml, csv, application/rssxml, tsv, xml, kmz, kml, application/geo+jsonAvailable download formats
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Iowa
    Description

    This dataset contains Iowa population estimates by sex, age, and disability status for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B18101.

    Sex includes the following: Both, Male, Female

    Age includes the following: All Age Groups, 04 Years and Younger, 05 to 17 Years, 18 to 34 Years, 35 to 64 Years, 65 to 74 Years, and 75 Years and Older.

    Disability Status includes the following: All Groups, Disability, No Disability.

  15. c

    Disability Status

    • data.clevelandohio.gov
    • hub.arcgis.com
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Disability Status [Dataset]. https://data.clevelandohio.gov/datasets/disability-status
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description
    This layer shows disability status by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.

    This layer is symbolized to show the percentage of elderly (65+) with a disability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2019-2023
    ACS Table(s): B18101

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. a

    Disability (by Atlanta Neighborhood Statistical Areas) 2019

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Disability (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/disability-by-atlanta-neighborhood-statistical-areas-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  17. f

    Disability (by Georgia House) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Disability (by Georgia House) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/0f76c2cda04f4627a59bbc3a15077ac5
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  18. d

    Disability - ACS 2018-2022 - Tempe Tracts

    • catalog.data.gov
    • open.tempe.gov
    • +7more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Disability - ACS 2018-2022 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/disability-acs-2018-2022-tempe-tracts
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows six different types of disability. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population with a disability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.Layer includes percent of population with a disability categorized as:an independent living difficultya hearing difficultyan ambulatory difficultya vision difficultya cognitive difficultya selfcare difficultyA ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): S1810 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 15, 2023National Figures: data.census.gov

  19. l

    Census 21 - Disability MSOA

    • data.leicester.gov.uk
    csv, excel, geojson +1
    Updated Aug 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census 21 - Disability MSOA [Dataset]. https://data.leicester.gov.uk/explore/dataset/census-21-disability-msoa/
    Explore at:
    excel, json, csv, geojsonAvailable download formats
    Dataset updated
    Aug 22, 2023
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for the MSOAs of Leicester and compare this with Leicester overall statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsDisabilityThis dataset provides Census 2021 estimates that classify usual residents in England and Wales by long-term health problems or disabilities. The estimates are as at Census Day, 21 March 2021.Definition: People who assessed their day-to-day activities as limited by long-term physical or mental health conditions or illnesses are considered disabled. This definition of a disabled person meets the harmonised standard for measuring disability and is in line with the Equality Act (2010).This dataset includes details for Leicester MSOAs.

  20. Household Pulse Survey (HPS): COVID-19 Vaccination among People with...

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Household Pulse Survey (HPS): COVID-19 Vaccination among People with Disabilities [Dataset]. https://catalog.data.gov/dataset/household-pulse-survey-hps-covid-19-vaccination-among-people-with-disabilities
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Household Pulse Survey (HPS): HPS is a rapid-response survey of adults ages ≥18 years led by the U.S. Census Bureau, in partnership with seven other federal statistical agencies, to measure household experiences during the COVID-19 pandemic. Detailed information on probability sampling using the U.S. Census Bureau’s Master Address File, questionnaires, response rates, and bias assessment is available on the Census Bureau website (https://www.census.gov/data/experimental-data-products/household-pulse-survey.html). Data from adults ages ≥18 years and older are collected by a 20-minute online survey from randomly sampled households stratified by state and the top 15 metropolitan statistical areas (MSAs). Data are weighted to represent total persons ages 18 and older living within households and to mitigate possible bias that can result from non-responses and incomplete survey frame. Data from adults ages ≥18 years and older are collected by 20-minute online survey from randomly sampled households stratified by state and the top 15 metropolitan statistical areas (MSAs). For more information on this survey, see https://www.census.gov/programs-surveys/household-pulse-survey.html. Data are weighted to represent total persons ages 18 and older living within households and to mitigate possible bias that can result from non-responses and incomplete survey frame. Responses in the Household Pulse Survey (https://www.census.gov/programs-surveys/household-pulse-survey.html) are self-reported. Estimates of vaccination coverage may differ from vaccine administration data reported at COVID-19 Vaccinations in the United States (https://covid.cdc.gov/covid-data-tracker/#vaccinations).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Census Bureau (2023). Current Population Survey: Disability Supplement [Dataset]. https://catalog.data.gov/dataset/current-population-survey-disability-supplement
Organization logo

Current Population Survey: Disability Supplement

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 19, 2023
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

Measures data in specific areas related to the employment of persons with disabilities. Gives labor force participation rates, work history, barriers to employment, and types of workplace accommodations for persons with disabilities.

Search
Clear search
Close search
Google apps
Main menu