Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
The World Development Indicators from the World Bank contain over a thousand annual indicators of economic development from hundreds of countries around the world.
Here's a list of the available indicators along with a list of the available countries.
For example, this data includes the life expectancy at birth from many countries around the world:
The dataset hosted here is a slightly transformed verion of the raw files available here to facilitate analytics.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.happierway.org/wp-content/uploads/2021/03/Capture-1.png" alt="World Happiness report 2021">
This dataset contains the mortality data due to various factors across the globe in different countries from the Ninth World Happiness report (2021). The World Happiness Report 2021 focuses on the effects of COVID-19 and how people all over the world have fared.
This dataset contains data such as the various countries selected, their respective populations in the year 2019 and 2020, total COVID-19 deaths in each of these countries, the median age in the corresponding countries considered, whether it is an island or not, index of exposure to COVID-19 infections in other countries as of march 31, log of average distance to SARS countries, whether it is a WHO western pacific region, whether a female head of government or not. In particular, we try to explain why some countries have done so much better than others.
The preparation of the first World Happiness report was based in the Earth Institute at Columbia University, with the Centre for Economic Performance’s research support at the LSE and the Canadian Institute for Advanced Research, through their grants supporting research at the Vancouver School of Economics at UBC. Also keeping in mind the current situation across the globe, it has inspired me to share this dataset and make some interesting conclusions. The aim was two-fold, first to focus on the effects of COVID-19 on the structure and quality of people’s lives, and second to describe and evaluate how governments all over the world have dealt with the pandemic. The detailed dataset can be found in the following website https://worldhappiness.report/ed/2021/ with some other interesting statistics!
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID vaccination vs. mortality ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sinakaraji/covid-vaccination-vs-death on 12 November 2021.
--- Dataset description provided by original source is as follows ---
The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.
country | iso_code | date | total_vaccinations | people_vaccinated | people_fully_vaccinated | New_deaths | population | ratio |
---|---|---|---|---|---|---|---|---|
country name | iso code for each country | date that this data belong | number of all doses of COVID vaccine usage in that country | number of people who got at least one shot of COVID vaccine | number of people who got full vaccine shots | number of daily new deaths | 2021 country population | % of vaccinations in that country at that date = people_vaccinated/population * 100 |
This dataset is a combination of the following three datasets:
1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress
2.https://covid19.who.int/WHO-COVID-19-global-data.csv
3.https://www.kaggle.com/rsrishav/world-population
you can find more detail about this dataset by reading this notebook:
https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination
Afghanistan | Albania | Algeria | Andorra | Angola |
Anguilla | Antigua and Barbuda | Argentina | Armenia | Aruba |
Australia | Austria | Azerbaijan | Bahamas | Bahrain |
Bangladesh | Barbados | Belarus | Belgium | Belize |
Benin | Bermuda | Bhutan | Bolivia (Plurinational State of) | Brazil |
Bosnia and Herzegovina | Botswana | Brunei Darussalam | Bulgaria | Burkina Faso |
Cambodia | Cameroon | Canada | Cabo Verde | Cayman Islands |
Central African Republic | Chad | Chile | China | Colombia |
Comoros | Cook Islands | Costa Rica | Croatia | Cuba |
Curaçao | Cyprus | Denmark | Djibouti | Dominica |
Dominican Republic | Ecuador | Egypt | El Salvador | Equatorial Guinea |
Estonia | Ethiopia | Falkland Islands (Malvinas) | Fiji | Finland |
France | French Polynesia | Gabon | Gambia | Georgia |
Germany | Ghana | Gibraltar | Greece | Greenland |
Grenada | Guatemala | Guinea | Guinea-Bissau | Guyana |
Haiti | Honduras | Hungary | Iceland | India |
Indonesia | Iran (Islamic Republic of) | Iraq | Ireland | Isle of Man |
Israel | Italy | Jamaica | Japan | Jordan |
Kazakhstan | Kenya | Kiribati | Kuwait | Kyrgyzstan |
Lao People's Democratic Republic | Latvia | Lebanon | Lesotho | Liberia |
Libya | Liechtenstein | Lithuania | Luxembourg | Madagascar |
Malawi | Malaysia | Maldives | Mali | Malta |
Mauritania | Mauritius | Mexico | Republic of Moldova | Monaco |
Mongolia | Montenegro | Montserrat | Morocco | Mozambique |
Myanmar | Namibia | Nauru | Nepal | Netherlands |
New Caledonia | New Zealand | Nicaragua | Niger | Nigeria |
Niue | North Macedonia | Norway | Oman | Pakistan |
occupied Palestinian territory, including east Jerusalem | ||||
Panama | Papua New Guinea | Paraguay | Peru | Philippines |
Poland | Portugal | Qatar | Romania | Russian Federation |
Rwanda | Saint Kitts and Nevis | Saint Lucia | ||
Saint Vincent and the Grenadines | Samoa | San Marino | Sao Tome and Principe | Saudi Arabia |
Senegal | Serbia | Seychelles | Sierra Leone | Singapore |
Slovakia | Slovenia | Solomon Islands | Somalia | South Africa |
Republic of Korea | South Sudan | Spain | Sri Lanka | Sudan |
Suriname | Sweden | Switzerland | Syrian Arab Republic | Tajikistan |
United Republic of Tanzania | Thailand | Togo | Tonga | Trinidad and Tobago |
Tunisia | Turkey | Turkmenistan | Turks and Caicos Islands | Tuvalu |
Uganda | Ukraine | United Arab Emirates | The United Kingdom | United States of America |
Uruguay | Uzbekistan | Vanuatu | Venezuela (Bolivarian Republic of) | Viet Nam |
Wallis and Futuna | Yemen | Zambia | Zimbabwe |
--- Original source retains full ownership of the source dataset ---
How much do natural disasters cost us? In lives, in dollars, in infrastructure? This dataset attempts to answer those questions, tracking the death toll and damage cost of major natural disasters since 1985. Disasters included are storms ( hurricanes, typhoons, and cyclones ), floods, earthquakes, droughts, wildfires, and extreme temperatures
This dataset contains information on natural disasters that have occurred around the world from 1900 to 2017. The data includes the date of the disaster, the location, the type of disaster, the number of people killed, and the estimated cost in US dollars
- An all-in-one disaster map displaying all recorded natural disasters dating back to 1900.
- Natural disaster hotspots - where do natural disasters most commonly occur and kill the most people?
- A live map tracking current natural disasters around the world
License
See the dataset description for more information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Stevens et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020. These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map populations for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is a daily updated dataset of COVID-19 deaths around the world. The dataset contains data of 45 countries. This data was collected from
us-counties.csv
contains data of the daily number of new cases and deaths, the seven-day rolling average and the seven-day rolling average per 100,000 residents of US at county level. The average reported is the seven day trailing average i.e. average of the day reported and six days prior.
all_weekly_excess_deaths.csv
collates detailed weekly breakdowns from official sources around the world.
Image credits: Unsplash - schluditsch
Let's pray for the ones who lost their lives fighting the battle and for the ones who risk their lives against this virus 🙏
Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.
The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.
National Coverage.
Individual
The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.
Sample survey data [ssd]
The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.
Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.
Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.
The sample size in Latvia was 1,006 individuals.
Face-to-face [f2f]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.
Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.
The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.
National Coverage.
Individual
The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.
Sample survey data [ssd]
The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.
Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.
Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.
The sample size in Morocco was 1,001 individuals.
Face-to-face [f2f]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.
Reducing energy use is a key way in which we can help to reduce carbon emissions in the UK. Communal environments, such as shared offices, consume a large amount of energy. It is therefore important to examine people's perceptions and motivations to use and save energy. This study examines motivations to save energy at work and at home and the likely reactions to different cooperative scenarios around energy use. Data comprises: demographics, including whether participants have managerial responsibitilites, size and sector of organisation worked for; behavioural intentions for energy use at home and at work; motivations to save energy at work and at home; concern about climate change and energy security; experience of black outs, power cuts and air pollution.This project will investigate innovative ways of dividing up and representing energy use in shared buildings so as to motivate occupants to save energy. Smart meters (energy monitors that feed information back to suppliers) are currently being introduced in Britain and around the world; the government aims to have one in every home and business in Britain by 2019. One reason for this is to provide people with better information about their energy use to help them to save energy. Providing energy feedback can be problematic in shared buildings, and here we focus on workplaces, where many different people interact and share utilities and equipment within that building. It is often difficult to highlight who is responsible for energy used and difficult therefore to divide up related costs and motivate changes in energy usage. We propose to focus on these challenges and consider the opportunities that exist in engaging whole communities of people in reducing energy use. This project is multidisciplinary, drawing primarily on computer science skills of joining up data from different sources and in examining user interactions with technology, design skills of developing innovative and fun ways of representing data, and social science skills (sociology and psychology) in ensuring that displays are engaging, can motivate particular actions, and fit appropriately within the building environment and constraints. We will use a variety of methods making use of field deployments, user studies, ethnography, and small-scale surveys so as to evaluate ideas at every step. We have divided the project into three key work packages: 'Taking Ownership' which will focus on responsibility for energy usage, 'Putting it Together' where we will put energy usage in context, and 'People Power' where we will focus on creating collective behaviour change. In more detail, 'Taking Ownership' will explore how to identify who is using energy within a building, how best to assign responsibility and how to feed that back to the occupants. We know that simplicity of design is key here, as well as issues of fairness and ethics, and indeed privacy (might people be able to monitor your coffee drinking habits from this data?). 'Putting it Together' will consider different ways of combining energy data, e.g. joining this up across user groups or spaces, and combining energy data with other commonly available information, e.g. weather or diary data, so as to put it in context. We will also spend time considering the particular building context, the routines that currently exist for occupants, and the motivations that people have for using and saving energy within the building, in understanding how best to present energy information to the occupants. Our third theme, 'People Power' will focus on changing building user's behaviour collectively. We will examine how people interact around different energy goals, considering in particular cooperation and regulation, in finding out what works best in different contexts. The project then brings all aspects of research together in the use of themed challenge days where we promote specific energy actions for everyone in a building (e.g. switching off equipment after use) and demonstrate the impact that collective behaviour change can have. Beyond simply observing what works in this context through objective measures of energy usage, we will analyse when and where behaviour changes occurred and speak to the users themselves to find out what was engaging. These activities will combine to inform technical, design and policy recommendations for energy monitoring in workplaces as well as conclusions for other multi-occupancy buildings. Moreover, we will develop a tool kit to pass on to other companies and buildings so that others can use the findings and experience gained here. We will also explore theoretical implications of our results and communicate our academic findings to the range of disciplines involved
Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.
The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.
National Coverage.
Individual
The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.
Sample survey data [ssd]
The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.
Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.
Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.
The sample size in Kazakhstan was 1,000 individuals.
Face-to-face [f2f]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.
Age and sex structures: WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Tatem et al and Pezzulo et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020 structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map population age and sex counts for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2024 based on 138 countries was 5.56 points. The highest value was in Finland: 7.74 points and the lowest value was in Afghanistan: 1.72 points. The indicator is available from 2013 to 2024. Below is a chart for all countries where data are available.
Age and sex structures: WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Tatem et al and Pezzulo et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020 structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map population age and sex counts for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
[Edit 12/09/2020] You will now find in the files below the last 30 days, too many people do not respect the request not to recover too often the dataset (no interest in recovering every minute while the file changes 4 or 5 times a day) If you want access to the entire history, contact me [Edit 31/03/2020] Since yesterday, I made sure to have the data of the day since the ESSC, so the data of the same day are now available and updated several times a day (about every hour) as the new figures fall all over the world. The data of the previous day is always consolidated around 2am (it is no longer 1h since the time change). If you only want to have the complete data, just don't take into account the last day (today’s date) Here I share the data that I compile with the famous coronavirus infection world map created and maintained by The Johns Hopkins University and which serve me to display ** CoronaVirus statistics worldwide and by country** They share the day’s data each night on a GitHub deposit. My tools compile this new data as soon as they are available and I share the result here. This data is used to display tables and graphs on the CoronaVirus website (Covid19) of Politologue.com https://coronavirus.politologue.com/ This data will allow you to make your own graphs and analyses if you look at the subject. I do not oblige you to do it, but if my compilation allows you to do something about it and saved you time, a link to https://coronavirus.politologue.com/ will be appreciable. Information in files (csv and json) — Number of cases — Number of deaths — Number of healing — Death rate (percentage) — Healing rate (percentage) — Infection rate (persons still infected, not deceased or cured) (percentage) — And for data by country, you will find a field “country” If you integrate the client-side json or csv on a site or application, please keep a cache on your servers without risking an unexpected load on my servers.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on single levels from 1940 to present".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name