Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
This dataset contains the New York City Population By Community Districts.The community boards of the New York City government are the appointed advisory groups of the community districts of the five boroughs. There are currently 59 community districts, including twelve in Manhattan, twelve in the Bronx, eighteen in Brooklyn, fourteen in Queens, and three in Staten Island.
The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
NYC Taxi Trip Description Dataset
This dataset contains NYC taxi trip data from May 1-7, 2013, excluding trips to and from Staten Island. It includes 2,957 sequences with 362,374 events and 8 location types. The data can be downloaded from NYC Taxi Trips and is subject to the NYC Terms of Use. The detailed data preprocessing steps used to create this dataset can be found in the TPP-LLM paper and TPP-LLM-Embedding paper. If you find this dataset useful, we kindly invite you to cite… See the full description on the dataset page: https://huggingface.co/datasets/tppllm/nyc-taxi-description.
This is a dataset containing the entrances and exits at New York City Subway and Staten Island Railway stations. Information is provided on the entrance or exit, including their coordinates, the borough they are in, whether it allows entries and exits, and the type of entrance (more information below). The dataset also includes the name of the station complex, the complex ID number, the name of the specific station in the complex the entrance is for (constituent station), the station ID number, the GTFS Stop ID, the daytime routes that stop at the station complex, and the line and division the constituent station is on.
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York counties by population for 2024.
A dataset listing all subway and Staten Island Railway stations, with data aggregated by station complex. This dataset includes information on station names, their locations, Station IDs, Complex IDs, GTFS Stop IDs, the services that stop there, the type of structure the station is on or in, whether they are in Manhattan’s Central Business District (CBD), and their ADA-accessibility status.
This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.
This deprecated dataset provides systemwide ridership and traffic estimates for subways (including the Staten Island Railway), buses, Long Island Rail Road, Metro-North Railroad, Access-A-Ride, and Bridges and Tunnels, beginning 3/1/2020, and provides a percentage comparison against a comparable pre-pandemic date.
Next-day estimates for daily ridership, without the pre-pandemic comparison, are now provided at https://data.ny.gov/d/sayj-mze2
NYC Wi-Fi Hotspot Locations Wi-Fi Providers: CityBridge, LLC (Free Beta): LinkNYC 1 gigabyte (GB), Free Wi-Fi Internet Kiosks Spot On Networks (Free) NYC HOUSING AUTHORITY (NYCHA) Properties Fiberless (Free): Wi-Fi access on Governors Island Free - up to 5 Mbps for users as the part of Governors Island Trust Governors Island Connectivity Challenge AT&T (Free): Wi-Fi access is free for all users at all times. Partners: In several parks, the NYC partner organizations provide publicly accessible Wi-Fi. Visit these parks to learn more information about their Wi-Fi service and how to connect. Cable (Limited-Free): In NYC Parks provided by NYC DoITT Cable television franchisees. ALTICEUSA previously known as “Cablevision” and SPECTRUM previously known as “Time Warner Cable” (Limited Free) Connect for 3 free 10 minute sessions every 30 days or purchase a 99 cent day pass through midnight. Wi-Fi service is free at all times to Cablevision’s Optimum Online and Time Warner Cable broadband subscribers. Wi-Fi Provider: Chelsea Wi-Fi (Free) Wi-Fi access is free for all users at all times. Chelsea Improvement Company has partnered with Google to provide Wi-Fi a free wireless Internet zone, a broadband region bounded by West 19th Street, Gansevoort Street, Eighth Avenue, and the High Line Park. Wi-Fi Provider: Downtown Brooklyn Wi-Fi (Free) The Downtown Brooklyn Partnership - the New York City Economic Development Corporation to provide Wi-Fi to the area bordered by Schermerhorn Street, Cadman Plaza West, Flatbush Avenue, and Tillary Street, along with select public spaces in the NYCHA Ingersoll and Whitman Houses. Wi-Fi Provider: Manhattan Downtown Alliance Wi-Fi (Free) Lower Manhattan Several public spaces all along Water Street, Front Street and the East River Esplanade south of Fulton Street and in several other locations throughout Lower Manhattan. Wi-Fi Provider: Harlem Wi-Fi (Free) The network will extend 95 city blocks, from 110th to 138th Streets between Frederick Douglass Boulevard and Madison Avenue is the free outdoor public wireless network. Wi-Fi Provider: Transit Wireless (Free) Wi-Fi Services in the New York City subway system is available in certain underground stations. For more information visit http://www.transitwireless.com/stations/. Wi-Fi Provider: Public Pay Telephone Franchisees (Free) Using existing payphone infrastructure, the City of New York has teamed up with private partners to provide free Wi-Fi service at public payphone kiosks across the five boroughs at no cost to taxpayers. Wi-Fi Provider: New York Public Library Using Wireless Internet Access (Wi-Fi): All Library locations offer free wireless access (Wi-Fi) in public areas at all times the libraries are open. Connecting to the Library's Wireless Network •You must have a computer or other device equipped with an 802.11b-compatible wireless card. •Using your computer's network utilities, look for the wireless network named "NYPL." •The "NYPL" wireless network does not require a password to connect. Limitations and Disclaimers Regarding Wireless Access •The Library's wireless network is not secure. Information sent from or to your laptop can be captured by anyone else with a wireless device and the appropriate software, within three hundred feet. •Library staff is not able to provide technical assistance and no guarantee can be provided that you will be able to make a wireless connection. •The Library assumes no responsibility for the safety of equipment or for laptop configurations, security, or data files resulting from connection to the Library's network
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
As a participant to NYC Taxi Trip Duration, I'm providing additional data, to help extracting many new usefull features.
To do so I'm using a high performance routing engine designed to run on OpenStreetMap data.
Having the whole blind test data, I decided also to share a small amount concerning erroneous samples (less than 0.15%), so competitors can focus matching real world data and to not try to fit randomness.
Note: The steps files are big so I split them into two parts. Part 1, Part2
Description of different tables used.
id: Record id
distance: Route distance (m)
duration: OSRM trip duration (s)
motorway, trunk, primary, secondary, tertiary, unclassified, residential:
The proportion spent on different kind of roads (% of total distance)
nTrafficSignals: The number of traffic signals.
nCrossing: The number of pedestrian crossing.
nStop: The number of stop signs.
nIntersection: The number of intersections, if you are OSRM user, intersection have different meaning than the one used in OSRM.
*Intersection can be crossroad, but not a highway exit...
srcCounty, dstCounty: Pickup/Dropoff county.
NA: Not in NYC
1: Brooklyn
2: Queens
3: Staten Island
4: Manhattan
5: Bronx
For each trip we saved all the ways (route portion).
id: train/test id.
wayId: Way id, you can check the way using www.openstreetmap.org/way/*wayId*
portion: The proportion of the total distance
It contains encoded nodes (lon/lat coordinates), of the used ways.
wayId: The way identification.
polyline: Encoded polylines.
id: Same as original data.
bug: kind of the bug (0=none)
Trip duration higher than 1 day;
Drop off on the day after pickup, and trip duration higher than 6h;
Drop off time at 00:00:00 and vendor_id eq 2.
trip_duration: Taxi trip duration
The Heat Vulnerability Index (HVI) shows neighborhoods whose residents are more at risk for dying during and immediately following extreme heat. It uses a statistical model to summarize the most important social and environmental factors that contribute to neighborhood heat risk. The factors included in the HVI are surface temperature, green space, access to home air conditioning, and the percentage of residents who are low-income or non-Latinx Black. Differences in these risk factors across neighborhoods are rooted in past and present racism. Neighborhoods are scored from 1 (lowest risk) to 5 (highest risk) by summing the following factors and assigning them into 5 groups (quintiles):
Median Household Income (American Community Survey 5 year estimate, 2016-2020)
Percent vegetative cover (trees, shrubs or grass) (2017 LiDAR, NYC DOITT)
Percent of population reported as Non-Hispanic Black on Census 2020
Average surface temperature Fahrenheit from ECOSSTRESS thermal imaging, August 27,2020
Percent of households reporting Air Conditioning access, Housing ad Vacancy Survey, 2017
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NYC Wi-Fi Hotspot Locations’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/69cb3cd4-25f9-41ca-8e26-2ee6a46cb67f on 13 February 2022.
--- Dataset description provided by original source is as follows ---
NYC Wi-Fi Hotspot Locations Wi-Fi Providers: CityBridge, LLC (Free Beta): LinkNYC 1 gigabyte (GB), Free Wi-Fi Internet Kiosks Spot On Networks (Free) NYC HOUSING AUTHORITY (NYCHA) Properties Fiberless (Free): Wi-Fi access on Governors Island Free - up to 5 Mbps for users as the part of Governors Island Trust Governors Island Connectivity Challenge AT&T (Free): Wi-Fi access is free for all users at all times. Partners: In several parks, the NYC partner organizations provide publicly accessible Wi-Fi. Visit these parks to learn more information about their Wi-Fi service and how to connect. Cable (Limited-Free): In NYC Parks provided by NYC DoITT Cable television franchisees. ALTICEUSA previously known as “Cablevision” and SPECTRUM previously known as “Time Warner Cable” (Limited Free) Connect for 3 free 10 minute sessions every 30 days or purchase a 99 cent day pass through midnight. Wi-Fi service is free at all times to Cablevision’s Optimum Online and Time Warner Cable broadband subscribers. Wi-Fi Provider: Chelsea Wi-Fi (Free) Wi-Fi access is free for all users at all times. Chelsea Improvement Company has partnered with Google to provide Wi-Fi a free wireless Internet zone, a broadband region bounded by West 19th Street, Gansevoort Street, Eighth Avenue, and the High Line Park. Wi-Fi Provider: Downtown Brooklyn Wi-Fi (Free) The Downtown Brooklyn Partnership - the New York City Economic Development Corporation to provide Wi-Fi to the area bordered by Schermerhorn Street, Cadman Plaza West, Flatbush Avenue, and Tillary Street, along with select public spaces in the NYCHA Ingersoll and Whitman Houses. Wi-Fi Provider: Manhattan Downtown Alliance Wi-Fi (Free) Lower Manhattan Several public spaces all along Water Street, Front Street and the East River Esplanade south of Fulton Street and in several other locations throughout Lower Manhattan. Wi-Fi Provider: Harlem Wi-Fi (Free) The network will extend 95 city blocks, from 110th to 138th Streets between Frederick Douglass Boulevard and Madison Avenue is the free outdoor public wireless network. Wi-Fi Provider: Transit Wireless (Free) Wi-Fi Services in the New York City subway system is available in certain underground stations. For more information visit http://www.transitwireless.com/stations/. Wi-Fi Provider: Public Pay Telephone Franchisees (Free) Using existing payphone infrastructure, the City of New York has teamed up with private partners to provide free Wi-Fi service at public payphone kiosks across the five boroughs at no cost to taxpayers. Wi-Fi Provider: New York Public Library Using Wireless Internet Access (Wi-Fi): All Library locations offer free wireless access (Wi-Fi) in public areas at all times the libraries are open. Connecting to the Library's Wireless Network •You must have a computer or other device equipped with an 802.11b-compatible wireless card. •Using your computer's network utilities, look for the wireless network named "NYPL." •The "NYPL" wireless network does not require a password to connect. Limitations and Disclaimers Regarding Wireless Access •The Library's wireless network is not secure. Information sent from or to your laptop can be captured by anyone else with a wireless device and the appropriate software, within three hundred feet. •Library staff is not able to provide technical assistance and no guarantee can be provided that you will be able to make a wireless connection. •The Library assumes no responsibility for the safety of equipment or for laptop configurations, security, or data files resulting from connection to the Library's network
--- Original source retains full ownership of the source dataset ---
This data set contains New York City Police Department provided felony assault count data for calendar years 2020 and 2021. The data includes counts of the number of intimate-partner felony assaults and the number of expected intimate-partner felony assaults by: race (American Indian, Asian, Black, Hispanic and White) and sex (male, female) for New York City, each borough (Bronx, Brooklyn, Manhattan, Queens and Staten Island) and community district. The following defines felony assault: Felony assault requires that a victim suffer a physical injury and covers injuries caused either intentionally or recklessly and includes injuries caused by either a deadly weapon or dangerous instrument. See New York Penal Law § § 120.05, 120.10. The expected number of felony assaults were calculated by taking the total number of actual felony assaults for a given geography (New York City, the Bronx, Brooklyn, Manhattan, Queens and Staten Island) and proportioning them by demographic breakdown of the geographic area.
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
This dataset contains the daily number of Staten Island Ferry riders at the Whitehall and St. George terminals. For a more detailed breakdown of riders on each trip, including information on riders with bicycles, visit this site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Topographic indices calculated in support of Kelleher and McPhillips (in review). We calculated two topographic indices - absolute sink depth (m) and topographic wetness index (-) - using TauDEM (v. 5.3) software and the D-infinity flow routing algorithm.
Watersheds include those in Manhattan (CP1, CP2, M1, M2) and Staten Island (SI1, SI2). Naming convention and sites are shown in the associated manuscript. Note that processing for Baltimore is limited to the extent of each watershed that overlaps with the Baltimore city limits, though processing occurred for the entire watershed and was masked to this area.
Values were processed based on the LiDAR digital elevation models (DEM) for NYC, linked below in references (note: to make datasets comparable, the NYC DEM was coarsened to 0.91 m resolution). As presented in the associated manuscript, all topographic index values were extracted for all surfaces (e.g., bare soil, pavement, sidewalks, and vegetated areas) that excluded open water and building footprints (where topographic processing and DEM coverages are less reliable). Land cover datasets are linked below.
Naming convention for all files first specifies watershed name (NYC: cp1, cp2, m1, m2, si1, si2) followed by topographic index type (twi = topographic wetness index, sink = sink depth).
Descriptions for how each topographic index are calculated are specified in the associated manuscript. Generally, sink depths were calculated by differencing the filled and unfilled DEMs, and TWI was calculated from topographic slope and accumulated area, both processed within TauDEM (note: when negative slopes were calculated, these were replaced with very small values, e.g., 0.001).
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly).
Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
The dataset contains annual count data for the number of family-related domestic incident reports, family-related felony assaults, domestic violence related felony assaults, family-related rapes and domestic violence related rapes. The Mayor's Office to End Domestic and Gender-Based Violence (ENDGBV) develops policies and programs, provides training and prevention education, conducts research and evaluations, performs community outreach, and operates the New York City Family Justice Centers. The office collaborates with City agencies and community stakeholders to ensure access to inclusive services for survivors of domestic and gender-based violence (GBV) services. GBV can include intimate partner and family violence, elder abuse, sexual assault, stalking, and human trafficking. ENDGBV operates the New York City Family Justice Centers. These co‐located multidisciplinary domestic violence service centers provide vital social service, civil legal and criminal justice assistance for survivors of intimate partner violence and their children under one roof. The Brooklyn Family Justice Center opened in July 2005; the Queens Family Justice Center opened in July 2008; the Bronx Family Justice Center opened in April 2010; Manhattan Family Justice Center opened in December 2013 and Staten Island Family Justice Center opened in June 2015. ENDGBV also has a Policy and Training Institute that provides trainings on intimate partner violence to other City agencies. The New York City Healthy Relationship Academy, with is part of the Policy and Training Institute, provides peer lead workshops on healthy relationships and teen dating violence to individuals between the age of 13 and 24, their parents and staff of agencies that work with youth in that age range. The dataset is collected to produce an annual report on the number of family-related and domestic violence related incidents that occur at the community board district level in New York City. The New York City Police Department provides ENDGBV with count data on: family-related domestic incident reports, family-related felony assaults, domestic violence felony assaults, family-violence related rapes and domestic violence related rapes.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.