Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Population Count Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution.
Purpose: To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.
Recommended Citation(s)*: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW. Accessed DAY MONTH YEAR.
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Coastlines are derived from the land area grid to show the outlines of pixels (cells) that contain administrative Units in GPWv3. The coastlines are designed for cartographic use with the GPWv3 population raster data sets. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.
China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.
This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.
Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.
Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.
Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.
Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.
| Columns | Description |
|---|---|
| CCA3 | 3 Digit Country/Territories Code |
| Name | Name of the Country/Territories |
| 2022 | Population of the Country/Territories in the year 2022. |
| 2020 | Population of the Country/Territories in the year 2020. |
| 2015 | Population of the Country/Territories in the year 2015. |
| 2010 | Population of the Country/Territories in the year 2010. |
| 2000 | Population of the Country/Territories in the year 2000. |
| 1990 | Population of the Country/Territories in the year 1990. |
| 1980 | Population of the Country/Territories in the year 1980. |
| 1970 | Population of the Country/Territories in the year 1970. |
| Area (km²) | Area size of the Country/Territories in square kilometer. |
| Density (per km²) | Population Density per square kilometer. |
| Grow... |
Facebook
TwitterThis dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Facebook
TwitterThis dataset contains estimates of the number of persons per 30 arc-second grid cell consistent with national censuses and population registers. There is one image for each modeled year. General Documentation Note: Because this collection has a pyramid policy of MEAN, zooming out results in information loss. Calculations need to be performed at native resolution. The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Facebook
TwitterThis dataset contains population estimates, by age and sex, per 30 arc-second grid cell consistent with national censuses and population registers. There is one image for each modeled age and sex category based on the 2010 round of Census. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision …
Facebook
TwitterExplore detailed subnational population data including total population, % of total, and more on this dataset webpage.
Population, total, % of total, Subnational
World
Follow data.kapsarc.org for timely data to advance energy economics research.
Note: Many of the data come from the country national statistical offices. Other data come from the NASA Socioeconomic Data and Applications Center (SEDAC) managed by the Center for International Earth Science Information Network (CIESIN), Earth Institute, Columbia University. It is the World Bank Group first subnational population database at a global level and there are data limitations. Series metadata includes methodology and the assumptions made.
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): National Identifier Grid is derived from the land area grid to create a raster surface where pixels (cells) that cover the same country or territory have the same value. Note that the countries and territories are not official representations of countries boundaries; rather, they represent the area covered by the statistical data as provided. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT). To provide a raster representation of nation-states in GPWv3 for use in aggregating population data.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Property Description
Hylak_id Unique lake identifier. Values range from 1 to 1,427,688.
**Lake_name ** Name of lake or reservoir. This field is currently only populated for lakes with an area of at least 500 km2; for large reservoirs where a name was available in the GRanD database; and for smaller lakes where a name was available in the GLWD database.
Country Country that the lake (or reservoir) is located in. International or transboundary lakes are assigned to the country in which its corresponding lake pour point is located and may be arbitrary for pour points that fall on country boundaries.
Continent Continent that the lake (or reservoir) is located in. Geographic continent: Africa, Asia, Europe, North America, South America, or Oceania (Australia and Pacific Islands)
Poly_src The name of datasets that were used in the column. Source of original lake polygon: CanVec; SWBD; MODIS; NHD; ECRINS; GLWD; GRanD; or Other More information on these data sources can be found in Table 1.
Lake_type Indicator for lake type: 1: Lake 2: Reservoir 3: Lake control (i.e. natural lake with regulation structure) Note that the default value for all water bodies is 1, and only those water bodies explicitly identified as other types (mostly based on information from the GRanD database) have other values; hence the type ‘Lake’ also includes all unidentified smaller human-made reservoirs and regulated lakes.
Grand_id ID of the corresponding reservoir in the GRanD database, or value 0 for no corresponding GRanD record. This field can be used to join additional attributes from the GRanD database.
Lake_area Lake surface area (i.e. polygon area), in square kilometers.
Shore_len Length of shoreline (i.e. polygon outline), in kilometers.
Shore_dev Shoreline development, measured as the ratio between shoreline length and the circumference of a circle with the same area. A lake with the shape of a perfect circle has a shoreline development of 1, while higher values indicate increasing shoreline complexity.
Vol_total Total lake or reservoir volume, in million cubic meters (1 mcm = 0.001 km3). For most polygons, this value represents the total lake volume as estimated using the geostatistical modeling approach by Messager et al. (2016). However, where either a reported lake volume (for lakes ≥ 500 km2) or a reported reservoir volume (from GRanD database) existed, the total volume represents this reported value. In cases of regulated lakes, the total volume represents the larger value between reported reservoir and modeled or reported lake volume. Column ‘Vol_src’ provides additional information regarding these distinctions.
Vol_res Reported reservoir volume, or storage volume of added lake regulation, in million cubic meters (1 mcm = 0.001 km3). 0: no reservoir volume
Vol_src 1: ‘Vol_total’ is the reported total lake volume from literature 2: ‘Vol_total’ is the reported total reservoir volume from GRanD or literature 3: ‘Vol_total’ is the estimated total lake volume using the geostatistical modeling approach by Messager et al. (2016)
Depth_avg Average lake depth, in meters. Average lake depth is defined as the ratio between total lake volume (‘Vol_total’) and lake area (‘Lake_area’).
Dis_avg Average long-term discharge flowing through the lake, in cubic meters per second. This value is derived from modeled runoff and discharge estimates provided by the global hydrological model WaterGAP, downscaled to the 15 arc-second resolution of HydroSHEDS (see section 2.2 for more details) and is extracted at the location of the lake pour point. Note that these model estimates contain considerable uncertainty, in particular for very low flows. -9999: no data as lake pour point is not on HydroSHEDS landmask
Res_time Average residence time of the lake water, in days. The average residence time is calculated as the ratio between total lake volume (‘Vol_total’) and average long-term discharge (‘Dis_avg’). Values below 0.1 are rounded up to 0.1 as shorter residence times seem implausible (and likely indicate model errors). -1: cannot be calculated as ‘Dis_avg’ is 0 -9999: no data as lake pour point is not on HydroSHEDS landmask
Elevation Elevation of lake surface, in meters above sea level. This value was primarily derived from the EarthEnv-DEM90 digital elevation model at 90 m pixel resolution by calculating the majority pixel elevation found within the lake boundaries. To remove some artefacts inherent in this DEM for northern latitudes, all lake values that showed negative elevation for the area north of 60°N were substituted with results using the coarser GTOPO30 DEM of USGS at 1 km pixel resolution, which ensures land surfaces ≥0 in this region. Note that due to the remaining uncertainties in the EarthEnv-DEM90 some small negative values occur along the global oce...
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): National Administrative Boundaries are derived from the land area grid to show the outlines of pixels (cells) that contain administrative units in GPWv3 on a per-country/territory basis. The National Boundaries data are derived from the pixels as polygons and thus have rectilinear boundaries at large scale. Note that the polygons that outline the countries and territories are not official representations; rather, they represent the area covered by the statistical data as provided. The national/territorial boundaries are designed for cartographic use with the GPWv3 population raster data sets. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT). To provide a quantitative measure of the input resolution of administrative units used for GPWv3.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set. To provide back-cast population count estimates at 30 arc-second (~1 km) resolution.
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): Data Quality Indicators, Revision 11 consists of three data layers created to provide context for the population count and density rasters, and explicit information on the spatial precision of the input boundary data. The Data Context raster explains pixels with a "0" population estimate in the population count and density rasters based on information included in the census documents, such as areas that are part of a national park, areas that have no households, etc. The Water Mask raster distinguishes between pixels that are completely water and/or ice (Total Water Pixels), pixels that contain water and land (Partial Water Pixels), pixels that are completely land (Total Land Pixels), and pixels that are completely ocean water (Ocean Pixels). The Mean Administrative Unit Area raster represents the mean input unit size in square kilometers and provides a quantitative surface that indicates the size of the input unit(s) from which population count and density rasters are created. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions. To provide context for the population count and density rasters, and explicit information on the spatial precision of the input boundary data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gridded Population of the World, Version 3 (GPWv3): Centroids consists of estimates of human population counts and densities for the years 1990, 1995, 2000, 2005, 2010, and 2015 by administrative unit centroid location. The centroids are based on the 399,781 input administrative units used in GPWv3. In addition to population counts and variables, the centroids have associated administrative unit names and the land area of contained within the administrative unit. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT). To provide a vector (point) version of the input administrative units used in GPWv3 for use in data integration.
Facebook
TwitterWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NASA GLOBE Community science project Leveraging Online and User Data through GLOBE And Zooniverse Engagement, or CLOUD GAZE is a NASA funded pilot project aimed to help NASA better understand the effect clouds are having on Earth’s climate. The CLOUD GAZE project is a collaboration between two giants of citizen science: The GLOBE Program and the Zooniverse online platform and is funded through NASA’s Citizen Science for Earth Systems Program. The CLOUD GAZE citizen science project characterizes cloud properties from sky photographs sent in through GLOBE Clouds ground observations. The GLOBE Clouds/CLOUD GAZE team at NASA Langley Research Center extracts cloud properties from sky photographs submitted to the GLOBE Program using the Zooniverse online platform.
The team produces datasets from three sources: ground-cloud observations from The GLOBE Program collocated with NASA/NOAA satellite data and the CLOUD GAZE cloud cover and cloud type characterizations. The datasets are for cloud type worldwide investigations and serve as training sets for machine learning. This data is provided as CSV files.
NASA GLOBE CLOUD GAZE Data Description
The data obtained from the Zooniverse, NASA Langley Research Center (NASA LaRC), and The GLOBE Program are free of charge for use in research, publications, and commercial applications. When data from The Zooniverse, The GLOBE Program, and NASA LaRC are used in a publication, we request this acknowledgment be included, "These data were obtained from the Zooniverse online platform, the GLOBE Program and NASA Langley Research Center." Please include such statements, either where the use of the data or other resource is described, or within the Acknowledgements section of the publication.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
Facebook
TwitterWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Facebook
TwitterHi, I thought I would pull together a dataset comprising of streetview images from different countries. I saw there were a couple datasets on Kaggle with a similar intention, but I wanted to help solve 2 main problems.
1) Balanced classes across countries. 2) Images tagged with coordinates.
What I have here are roughly 1000 images (and each image is 640x640 pixels) per country/region (many island nations get separate groupings to their nominal sovereign state, e.g., Bermuda, Faroe etc.) that have sufficient official google streetview coverage. There are some countries that do have streetview coverage, but I have not included, because the coverage is extremely limited. For example, Belarus only has limited trekker coverage in the centre of Minsk, so I don't feel it is representative of the region at large in a geography-prediction dataset. More info on which countries are in the dataset and which aren't is in Country-picking.md.
There are 111 regions in total. Each is indexed by its 2-letter shortening as you can find here https://www.iban.com/country-codes, they are also in country-picking.md, for reference.
To collect each set I first used an incredible tool to generate valid coordinates within a specified country, you can find this at https://github.com/slashP/Vali. Big thanks to the creator I could not have created this otherwise. The coordinates generated per country are intended to be spread apart, within respective sub-regions, which I hope will help create a representative dataset of that country overall. Downloaded images were then assorted to their respective country's folder and titled with the coordinates that they correspond to. For example
"42d436079_1d473612_h213.jpg"
means that the image was taken at a latitude of 42.436079, a longitude of 1.473612 and a heading (between 0 and 360) of 213.
Another note! Some regions are just that small that I couldn't curate 1000 locations within them, or I had to scale down the minimum distance between points. Notes explaining on which countries this is relevant are in Country-picking.md.
This is my first dataset so please if you have any suggestions please let me know I'd be happy to help make this a better dataset. In the future I'd love to expand this dataset into specific subregions of countries.
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Population Count Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).