72 datasets found
  1. United States Monthly Earnings

    • ceicdata.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Monthly Earnings [Dataset]. https://www.ceicdata.com/en/indicator/united-states/monthly-earnings
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    United States
    Description

    Key information about United States Monthly Earnings

    • United States Monthly Earnings stood at 4,901 USD in Feb 2025, compared with the previous figure of 4,887 USD in Jan 2025
    • US Monthly Earnings data is updated monthly, available from Mar 2006 to Feb 2025, with an average number of 3,469 USD
    • The data reached the an all-time high of 4,901 USD in Feb 2025 and a record low of 2,743 USD in Mar 2006

    CEIC calculates Monthly Earnings from Average Weekly Earnings multiplied by 4. U.S. Bureau of Labor Statistics provides Average Weekly Earnings in USD. Monthly Earnings include Private Non Agricultural sector only.


    Further information about United States Monthly Earnings

    • In the latest reports, US Population reached 341 million people in Dec 2024
    • Unemployment Rate of US increased to 4 % in Feb 2025
    • The country's Labour Force Participation Rate remained the same rate at 62 % in Feb 2025

  2. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  3. N

    United States annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/bacb49c0-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within United States. The dataset can be utilized to gain insights into gender-based income distribution within the United States population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within United States, among individuals aged 15 years and older with income, there were 119.64 million men and 117.56 million women in the workforce. Among them, 66.07 million men were engaged in full-time, year-round employment, while 50.33 million women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 7.45% fell within the income range of under $24,999, while 10.76% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 29.72% of men in full-time roles earned incomes exceeding $100,000, while 18.56% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income by race. You can refer the same here

  4. F

    Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBLT01026
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBLT01026) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.

  5. T

    United States Government Revenues

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Government Revenues [Dataset]. https://tradingeconomics.com/united-states/government-revenues
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1980 - Jun 30, 2025
    Area covered
    United States
    Description

    Government Revenues in the United States increased to 526445 USD Million in June from 371229 USD Million in May of 2025. This dataset provides - United States Government Revenues- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  7. d

    US Consumer Marketing Data - 269M+ Consumer Records - 95% Email and Direct...

    • datarade.ai
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giant Partners (2022). US Consumer Marketing Data - 269M+ Consumer Records - 95% Email and Direct Dials Accuracy [Dataset]. https://datarade.ai/data-products/consumer-business-data-postal-phone-email-demographics-giant-partners
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    Giant Partners
    Area covered
    United States
    Description

    Premium B2C Consumer Database - 269+ Million US Records

    Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.

    Core Database Statistics

    Consumer Records: Over 269 million

    Email Addresses: Over 160 million (verified and deliverable)

    Phone Numbers: Over 76 million (mobile and landline)

    Mailing Addresses: Over 116,000,000 (NCOA processed)

    Geographic Coverage: Complete US (all 50 states)

    Compliance Status: CCPA compliant with consent management

    Targeting Categories Available

    Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)

    Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options

    Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics

    Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting

    Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting

    Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors

    Multi-Channel Campaign Applications

    Deploy across all major marketing channels:

    Email marketing and automation

    Social media advertising

    Search and display advertising (Google, YouTube)

    Direct mail and print campaigns

    Telemarketing and SMS campaigns

    Programmatic advertising platforms

    Data Quality & Sources

    Our consumer data aggregates from multiple verified sources:

    Public records and government databases

    Opt-in subscription services and registrations

    Purchase transaction data from retail partners

    Survey participation and research studies

    Online behavioral data (privacy compliant)

    Technical Delivery Options

    File Formats: CSV, Excel, JSON, XML formats available

    Delivery Methods: Secure FTP, API integration, direct download

    Processing: Real-time NCOA, email validation, phone verification

    Custom Selections: 1,000+ selectable demographic and behavioral attributes

    Minimum Orders: Flexible based on targeting complexity

    Unique Value Propositions

    Dual Spouse Targeting: Reach both household decision-makers for maximum impact

    Cross-Platform Integration: Seamless deployment to major ad platforms

    Real-Time Updates: Monthly data refreshes ensure maximum accuracy

    Advanced Segmentation: Combine multiple targeting criteria for precision campaigns

    Compliance Management: Built-in opt-out and suppression list management

    Ideal Customer Profiles

    E-commerce retailers seeking customer acquisition

    Financial services companies targeting specific demographics

    Healthcare organizations with compliant marketing needs

    Automotive dealers and service providers

    Home improvement and real estate professionals

    Insurance companies and agents

    Subscription services and SaaS providers

    Performance Optimization Features

    Lookalike Modeling: Create audiences similar to your best customers

    Predictive Scoring: Identify high-value prospects using AI algorithms

    Campaign Attribution: Track performance across multiple touchpoints

    A/B Testing Support: Split audiences for campaign optimization

    Suppression Management: Automatic opt-out and DNC compliance

    Pricing & Volume Options

    Flexible pricing structures accommodate businesses of all sizes:

    Pay-per-record for small campaigns

    Volume discounts for large deployments

    Subscription models for ongoing campaigns

    Custom enterprise pricing for high-volume users

    Data Compliance & Privacy

    VIA.tools maintains industry-leading compliance standards:

    CCPA (California Consumer Privacy Act) compliant

    CAN-SPAM Act adherence for email marketing

    TCPA compliance for phone and SMS campaigns

    Regular privacy audits and data governance reviews

    Transparent opt-out and data deletion processes

    Getting Started

    Our data specialists work with you to:

    1. Define your target audience criteria

    2. Recommend optimal data selections

    3. Provide sample data for testing

    4. Configure delivery methods and formats

    5. Implement ongoing campaign optimization

    Why We Lead the Industry

    With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.

    Contact our team to discuss your specific targeting requirements and receive custom pricing for your marketing objectives.

  8. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. a

    PER CAPITA INCOME and AGGREGATE INCOME IN THE PAST 12 MONTHS (IN...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data-seattlecitygis.opendata.arcgis.com
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). PER CAPITA INCOME and AGGREGATE INCOME IN THE PAST 12 MONTHS (IN INFLATION-ADJUSTED DOLLARS) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/49bc2a16f010497b95ab82d5637ac1f4
    Explore at:
    Dataset updated
    Jul 26, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) B19301 and B19313 per capita and aggregate income. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): B19301 and B19313Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. F

    Households; Net Worth, Level

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Households; Net Worth, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL192090005Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Households; Net Worth, Level (BOGZ1FL192090005Q) from Q4 1987 to Q1 2025 about net worth, Net, households, and USA.

  11. a

    Incomes Occupations and Earnings - Seattle Neighborhoods

    • hub.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Mar 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). Incomes Occupations and Earnings - Seattle Neighborhoods [Dataset]. https://hub.arcgis.com/maps/SeattleCityGIS::incomes-occupations-and-earnings-seattle-neighborhoods
    Explore at:
    Dataset updated
    Mar 8, 2024
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on income and earning related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B19025 Aggregate Household Income, B19013 Median Household Income, B19001 Household Income, B19113 Median Family Household Income, B19101 Family Household Income, B19202 Median Nonfamily Household Income, B19201 Nonfamily Household Income, B19301 Per Capita Income/B19313 Aggregate Income/B01001 Sex by Age, C24010 Sex by Occupation of the Civilian Employed Population 16 years and Over, B20017 Median Earnings by Sex by Work Experience for the Population 16 years and over with Earnings, B20001 Sex by Earnings for the Population 16 years and over with Earnings. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B19013, B19001, B19113, B19101, B19202, B19201, B19301, B19313, B01001, C24010, B20017, B20001, B19025Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. ACS Median Household Income Variables - Centroids

    • gis-for-racialequity.hub.arcgis.com
    • places-lincolninstitute.hub.arcgis.com
    • +4more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Centroids [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/cab3fe0ee8304888a47a58355a472904
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  14. Data from: Public Use Data (2008-10) on Long-Term Neighborhood Effects on...

    • icpsr.umich.edu
    Updated Jan 15, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ludwig, Jens; Duncan, Greg J.; Gennetian, Lisa A.; Katz, Lawrence; Kessler, Ronald; Kling, Jeffrey; Sanbonmatsu, Lisa (2014). Public Use Data (2008-10) on Long-Term Neighborhood Effects on Low-Income Families (Adult Data Only) from All Five Sites of the Moving to Opportunity Experiment [Dataset]. http://doi.org/10.3886/ICPSR34976.v1
    Explore at:
    Dataset updated
    Jan 15, 2014
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Ludwig, Jens; Duncan, Greg J.; Gennetian, Lisa A.; Katz, Lawrence; Kessler, Ronald; Kling, Jeffrey; Sanbonmatsu, Lisa
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34976/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34976/terms

    Time period covered
    2008 - 2010
    Area covered
    Chicago, Baltimore, Massachusetts, United States, Maryland, California, Illinois, New York (state), Los Angeles, New York City
    Description

    Nearly 9 million Americans live in extreme-poverty neighborhoods, places that also tend to be racially segregated and dangerous. Yet, the effects on the well-being of residents of moving out of such communities into less distressed areas remain uncertain. Moving to Opportunity (MTO) is a randomized housing experiment administered by the United States Department of Housing and Urban Development that gave low-income families living in high-poverty areas in five cities the chance to move to lower-poverty areas. Families were randomly assigned to one of three groups: (1) The experimental group (also called the low-poverty voucher (LPV) group) received Section 8 rental assistance certificates or vouchers that they could use only in census tracts with 1990 poverty rates below 10 percent. The families received mobility counseling and help in leasing a new unit. One year after relocating, families could use their voucher to move again if they wished, without any special constraints on location. (2) The Section 8 group (also called the traditional voucher (TRV) group) received regular Section 8 certificates or vouchers that they could use anywhere; these families received no special mobility counseling. (3) The control group received no certificates or vouchers through MTO, but continued to be eligible for project-based housing assistance and whatever other social programs and services to which they would otherwise be entitled. Families were tracked from baseline (1994-98) through the long-term evaluation survey fielding period (2008-10) with the purpose of determining the effects of "neighborhood" on participating families. This data collection contains data from the 3,273 adult interviews completed as part of the MTO long-term evaluation and are comprised of adult variables that have been analyzed. Using data from the long-term evaluation, the associated article reports that moving from a high-poverty to lower-poverty neighborhood leads to long-term (10- to 15-year) improvements in adult physical and mental health and subjective well-being, despite not affecting economic self-sufficiency. The data contain all adult outcomes and mediators analyzed for the associated article as well as a variety of demographic and other baseline measures that were controlled for in the analysis.

  15. Low-Income Housing Tax Credit (LIHTC) Qualified Census Tract (QCT)

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low-Income Housing Tax Credit (LIHTC) Qualified Census Tract (QCT) [Dataset]. https://catalog.data.gov/dataset/low-income-housing-tax-credit-lihtc-qualified-census-tract-qct
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The Low-Income Housing Tax Credit (LIHTC) is the most important resource for creating affordable housing in the United States today. The LIHTC database, created by HUD and available to the public since 1997, contains information on 48,672 projects and 3.23 million housing units placed in service since 1987. Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Difficult Development Areas (DDA) are areas with high land, construction and utility costs relative to the area median income and are based on Fair Market Rents, income limits, the 2010 census counts, and 5-year American Community Survey (ACS) data.

  16. Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred...

    • icpsr.umich.edu
    ascii
    Updated Jan 18, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred Sample [Dataset]. http://doi.org/10.3886/ICPSR07756.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7756/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7756/terms

    Time period covered
    1960
    Area covered
    South Carolina, Idaho, Illinois, Utah, Massachusetts, New Hampshire, Washington, Montana, District of Columbia, Wyoming
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University.

  17. F

    Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBLB50107
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles) (WFRBLB50107) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.

  18. c

    Census of Population and Housing, 1960: Public Use Sample, 1 in 100

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1960: Public Use Sample, 1 in 100 [Dataset]. http://doi.org/10.6077/j5/ohycfx
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, Household
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  19. F

    Estimate of People of All Ages in Poverty in United States

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimate of People of All Ages in Poverty in United States [Dataset]. https://fred.stlouisfed.org/series/PEAAUS00000A647NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Estimate of People of All Ages in Poverty in United States (PEAAUS00000A647NCEN) from 1989 to 2023 about child, poverty, persons, and USA.

  20. A

    Child and Adult Care Food Participation, Meals, and Cost Data

    • data.amerigeoss.org
    • datasets.ai
    • +2more
    xls
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Child and Adult Care Food Participation, Meals, and Cost Data [Dataset]. https://data.amerigeoss.org/de/dataset/child-and-adult-care-food-participation-meals-and-cost-data
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Child and Adult Care Food Participation plays a vital role in improving the quality of day care for children and elderly adults by making care more affordable for many low-income families. Through CACFP, nearly 3 million children and 90,000 adults receive nutritious meals and snacks each day as part of the day care they receive. The data set contains participation; meals served, and cash payments to states.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2025). United States Monthly Earnings [Dataset]. https://www.ceicdata.com/en/indicator/united-states/monthly-earnings
Organization logo

United States Monthly Earnings

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 21, 2025
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Mar 1, 2024 - Feb 1, 2025
Area covered
United States
Description

Key information about United States Monthly Earnings

  • United States Monthly Earnings stood at 4,901 USD in Feb 2025, compared with the previous figure of 4,887 USD in Jan 2025
  • US Monthly Earnings data is updated monthly, available from Mar 2006 to Feb 2025, with an average number of 3,469 USD
  • The data reached the an all-time high of 4,901 USD in Feb 2025 and a record low of 2,743 USD in Mar 2006

CEIC calculates Monthly Earnings from Average Weekly Earnings multiplied by 4. U.S. Bureau of Labor Statistics provides Average Weekly Earnings in USD. Monthly Earnings include Private Non Agricultural sector only.


Further information about United States Monthly Earnings

  • In the latest reports, US Population reached 341 million people in Dec 2024
  • Unemployment Rate of US increased to 4 % in Feb 2025
  • The country's Labour Force Participation Rate remained the same rate at 62 % in Feb 2025

Search
Clear search
Close search
Google apps
Main menu