This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for United States. The dataset can be utilized to understand the population distribution of United States by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in United States. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for United States.
Key observations
Largest age group (population): Male # 30-34 years (11.65 million) | Female # 30-34 years (11.41 million). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
Spotify Million Playlist Dataset Challenge
Summary
The Spotify Million Playlist Dataset Challenge consists of a dataset and evaluation to enable research in music recommendations. It is a continuation of the RecSys Challenge 2018, which ran from January to July 2018. The dataset contains 1,000,000 playlists, including playlist titles and track titles, created by users on the Spotify platform between January 2010 and October 2017. The evaluation task is automatic playlist continuation: given a seed playlist title and/or initial set of tracks in a playlist, to predict the subsequent tracks in that playlist. This is an open-ended challenge intended to encourage research in music recommendations, and no prizes will be awarded (other than bragging rights).
Background
Playlists like Today’s Top Hits and RapCaviar have millions of loyal followers, while Discover Weekly and Daily Mix are just a couple of our personalized playlists made especially to match your unique musical tastes.
Our users love playlists too. In fact, the Digital Music Alliance, in their 2018 Annual Music Report, state that 54% of consumers say that playlists are replacing albums in their listening habits.
But our users don’t love just listening to playlists, they also love creating them. To date, over 4 billion playlists have been created and shared by Spotify users. People create playlists for all sorts of reasons: some playlists group together music categorically (e.g., by genre, artist, year, or city), by mood, theme, or occasion (e.g., romantic, sad, holiday), or for a particular purpose (e.g., focus, workout). Some playlists are even made to land a dream job, or to send a message to someone special.
The other thing we love here at Spotify is playlist research. By learning from the playlists that people create, we can learn all sorts of things about the deep relationship between people and music. Why do certain songs go together? What is the difference between “Beach Vibes” and “Forest Vibes”? And what words do people use to describe which playlists?
By learning more about nature of playlists, we may also be able to suggest other tracks that a listener would enjoy in the context of a given playlist. This can make playlist creation easier, and ultimately help people find more of the music they love.
Dataset
To enable this type of research at scale, in 2018 we sponsored the RecSys Challenge 2018, which introduced the Million Playlist Dataset (MPD) to the research community. Sampled from the over 4 billion public playlists on Spotify, this dataset of 1 million playlists consist of over 2 million unique tracks by nearly 300,000 artists, and represents the largest public dataset of music playlists in the world. The dataset includes public playlists created by US Spotify users between January 2010 and November 2017. The challenge ran from January to July 2018, and received 1,467 submissions from 410 teams. A summary of the challenge and the top scoring submissions was published in the ACM Transactions on Intelligent Systems and Technology.
In September 2020, we re-released the dataset as an open-ended challenge on AIcrowd.com. The dataset can now be downloaded by registered participants from the Resources page.
Each playlist in the MPD contains a playlist title, the track list (including track IDs and metadata), and other metadata fields (last edit time, number of playlist edits, and more). All data is anonymized to protect user privacy. Playlists are sampled with some randomization, are manually filtered for playlist quality and to remove offensive content, and have some dithering and fictitious tracks added to them. As such, the dataset is not representative of the true distribution of playlists on the Spotify platform, and must not be interpreted as such in any research or analysis performed on the dataset.
Dataset Contains
1000 examples of each scenario:
Title only (no tracks) Title and first track Title and first 5 tracks First 5 tracks only Title and first 10 tracks First 10 tracks only Title and first 25 tracks Title and 25 random tracks Title and first 100 tracks Title and 100 random tracks
Download Link
Full Details: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge Download Link: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge/dataset_files
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.