This dataset includes the nearest pickup and drop off city names for each trip record from New York City Taxi Trip Duration Competition.
The dataset introduces two new columns namely "Nearest_PickupCity" and "Nearest_DropoffCity" in addition to the original trip features. The city names may not be the exact geo cities in some cases, they are the nearest city to the trip records, therefore the term "Nearest" describes them best.
Implemented the offline package Reverse Geocoder (author - Ajay Thampi ) to get these data attributes. The original package is developed by Richard Pennman.
The idea is that this extension to the NYC Trip data can provide interesting and informative city trends about the taxi trips in NYC area.
All feedback is welcome
Data are updated semiannually, at the end of the second and fourth quarters of each year.
Please see DCP’s annual Housing Production Snapshot summarizing findings from the 21Q4 data release here. Additional Housing and Economic analyses are also available.
The NYC Department of City Planning’s (DCP) Housing Database Unit Change Summary Files provide the net change in Class A housing units since 2010, and the count of units pending completion for commonly used political and statistical boundaries (Census Block, Census Tract, City Council district, Community District, Community District Tabulation Area (CDTA), Neighborhood Tabulation Area (NTA). These tables are aggregated from the DCP Housing Database Project-Level Files, which is derived from Department of Buildings (DOB) approved housing construction and demolition jobs filed or completed in NYC since January 1, 2010. Net housing unit change is calculated as the sum of all three construction job types that add or remove residential units: new buildings, major alterations, and demolitions. These files can be used to determine the change in legal housing units across time and space.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Clifton Park town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Clifton Park town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Clifton Park town was 37,788, a 0.71% decrease year-by-year from 2022. Previously, in 2022, Clifton Park town population was 38,060, a decline of 0.31% compared to a population of 38,178 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Clifton Park town increased by 4,657. In this period, the peak population was 38,178 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Clifton Park town Population by Year. You can refer the same here
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. They are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
As described on the NYTimes Github page.
For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.
In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.
Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.
“Unknown” Counties Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.
Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.
Geographic Exceptions New York City All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.
Kansas City, Mo. Four counties (Cass, Clay, Jackson and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their own line.
Joplin, Mo. Joplin is reported separately from Jasper and Newton Counties.
Chicago All cases and deaths for Chicago are reported as part of Cook County.
Thanks to the New York Times for providing this data. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
The Gitbub repository can be found here: https://github.com/nytimes/covid-19-data
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
* Filter for specific state - filters 02_vmt_state.csv
daily data for specific state.
* Filter counties by state - filters 03_vmt_county.csv
daily data for counties in specific state.
* Filter for specific county - filters 03_vmt_county.csv
daily data for specific county.
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
@(https://interactives.ap.org/vmt-map/)
This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.
This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.
Data extracted from records of tickets on file with NYS DMV. The tickets were issued to motorists for violations of: NYS Vehicle & Traffic Law (VTL), Thruway Rules and Regulations, Tax Law, Transportation Law, Parks and Recreation Regulations, Local New York City Traffic Ordinances, and NYS Penal Law pertaining to the involvement of a motor vehicle in acts of assault, homicide, manslaughter and criminal negligence resulting in injury or death.
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. The main aim of this research is to study the criminal mobility of ethnic-based organized crime groups. The project examines whether organized crime groups are able to move abroad easily and to reproduce their territorial control in a foreign country, or whether these groups, and/or individual members, start a life of crime only after their arrival in the new territories, potentially as a result of social exclusion, economic strain, culture conflict and labeling. More specifically, the aim is to examine the criminal mobility of ethnic Albanian organized crime groups involved in a range of criminal markets and operating in and around New York City, area and to study the relevance of the importation/alien conspiracy model versus the deprivation model of organized crime in relation to Albanian organized crime. There are several analytical dimensions in this study: (1) reasons for going abroad; (2) the nature of the presence abroad; (3) level of support from ethnic constituencies in the new territories; (4) importance of cultural codes; (5) organizational structure; (6) selection of criminal activities; (7) economic incentives and political infiltration. This study utilizes a mixed-methods approach with a sequential exploratory design, in which qualitative data and documents are collected and analyzed first, followed by quantitative data. Demographic variables in this collection include age, gender, birth place, immigration status, nationality, ethnicity, education, religion, and employment status. Two main data sources were employed: (1) court documents, including indictments and court transcripts related to select organized crime cases (84 court documents on 29 groups, 254 offenders); (2) in-depth, face-to-face interviews with 9 ethnic Albanian offenders currently serving prison sentences in U.S. Federal Prisons for organized crime related activities, and with 79 adult ethnic Albanian immigrants in New York, including common people, undocumented migrants, offenders, and people with good knowledge of Albanian organized crime modus operandi. Sampling for these data were conducted in five phases, the first of which involved researchers examining court documents and identifying members of 29 major ethnic Albanian organized crime groups operating in the New York area between 1975 and 2013 who were or had served sentences in the U.S. Federal Prisons for organized crime related activities. In phase two researchers conducted eight in-depth interviews with law enforcement experts working in New York or New Jersey. Phase three involved interviews with members of the Albanian diaspora and filed observations from an ethnographic study. Researchers utilized snowball and respondent driven (RDS) recruitment methods to create the sample for the diaspora dataset. The self-reported criteria for recruitment to participate in the diaspora interviews were: (1) age 18 or over; (2) of ethnic Albanian origin (foreign-born or 1st/2nd generation); and (3) living in NYC area for at least 1 year. They also visited neighborhoods identified as high concentrations of ethnic Albanian individuals and conducted an ethnographic study to locate the target population. In phase four, data for the cultural advisors able to help with the project data was collected. In the fifth and final phase, researchers gathered data for the second wave of the diaspora data, and conducted interviews with offenders with ethnic Albanian immigrants with knowledge of the organized crime situation in New York City area. Researchers also approached about twenty organized crime figures currently serving a prison sentence, and were able to conduct 9 in-depth interviews.
This deprecated dataset provides systemwide ridership and traffic estimates for subways (including the Staten Island Railway), buses, Long Island Rail Road, Metro-North Railroad, Access-A-Ride, and Bridges and Tunnels, beginning 3/1/2020, and provides a percentage comparison against a comparable pre-pandemic date.
Next-day estimates for daily ridership, without the pre-pandemic comparison, are now provided at https://data.ny.gov/d/sayj-mze2
This dataset provides data showing the number of vehicles (including cars, buses, trucks and motorcycles) that pass through each of the bridges and tunnels operated by the MTA each hour of the day. The data is updated weekly.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset includes the nearest pickup and drop off city names for each trip record from New York City Taxi Trip Duration Competition.
The dataset introduces two new columns namely "Nearest_PickupCity" and "Nearest_DropoffCity" in addition to the original trip features. The city names may not be the exact geo cities in some cases, they are the nearest city to the trip records, therefore the term "Nearest" describes them best.
Implemented the offline package Reverse Geocoder (author - Ajay Thampi ) to get these data attributes. The original package is developed by Richard Pennman.
The idea is that this extension to the NYC Trip data can provide interesting and informative city trends about the taxi trips in NYC area.
All feedback is welcome