70 datasets found
  1. USA Name Data

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data.gov (2019). USA Name Data [Dataset]. https://www.kaggle.com/datasets/datagov/usa-names
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    Data.govhttps://data.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States

    Content

    This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.

    All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names

    https://cloud.google.com/bigquery/public-data/usa-names

    Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @dcp from Unplash.

    Inspiration

    What are the most common names?

    What are the most common female names?

    Are there more female or male names?

    Female names by a wide margin?

  2. Baby Names from Social Security Card Applications - National Data

    • catalog.data.gov
    • data.amerigeoss.org
    Updated May 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2022). Baby Names from Social Security Card Applications - National Data [Dataset]. https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-data
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    The data (name, year of birth, sex, and number) are from a 100 percent sample of Social Security card applications for 1880 onward.

  3. Nyc popular baby names

    • kaggle.com
    Updated Jun 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rahul Sarkar (2022). Nyc popular baby names [Dataset]. https://www.kaggle.com/datasets/rahulsarkar221/nyc-popular-baby-names
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 20, 2022
    Dataset provided by
    Kaggle
    Authors
    Rahul Sarkar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    New York
    Description

    This data contains popular baby names in New York .

    Dataset :- 1 file (popular-baby-names.csv)

    Columns - Year of Birth : Year of the baby's birth. - Gender : Gender of the baby. - Ethnicity : Types of ethnicity they belong to. - Child's First Name : The first name of the child. - Count : How many babies were named . - Ranking : Ranking of that name.

  4. f

    Namesakes

    • figshare.com
    json
    Updated Nov 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleg Vasilyev; Aysu Altun; Nidhi Vyas; Vedant Dharnidharka; Erika Lampert; John Bohannon (2021). Namesakes [Dataset]. http://doi.org/10.6084/m9.figshare.17009105.v1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2021
    Dataset provided by
    figshare
    Authors
    Oleg Vasilyev; Aysu Altun; Nidhi Vyas; Vedant Dharnidharka; Erika Lampert; John Bohannon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    Motivation: creating challenging dataset for testing Named-Entity
    

    Linking. The Namesakes dataset consists of three closely related datasets: Entities, News and Backlinks. Entities were collected as Wikipedia text chunks corresponding to highly ambiguous entity names. The News were collected as random news text chunks, containing mentions that either belong to the Entities dataset or can be easily confused with them. Backlinks were obtained from Wikipedia dump data with intention to have mentions linked to the entities of the Entity dataset. The Entities and News are human-labeled, resolving the mentions of the entities.Methods

    Entities were collected as Wikipedia 
    

    text chunks corresponding to highly ambiguous entity names: the most popular people names, the most popular locations, and organizations with name ambiguity. In each Entities text chunk, the named entities with the name similar to the chunk Wikipedia page name are labeled. For labeling, these entities were suggested to human annotators (odetta.ai) to tag as "Same" (same as the page entity) or "Other". The labeling was done by 6 experienced annotators that passed through a preliminary trial task. The only accepted tags are the tags assigned in agreement by not less than 5 annotators, and then passed through reconciliation with an experienced reconciliator.

    The News were collected as random news text chunks, containing mentions which either belong to the Entities dataset or can be easily confused with them. In each News text chunk one mention was selected for labeling, and 3-10 Wikipedia pages from Entities were suggested as the labels for an annotator to choose from. The labeling was done by 3 experienced annotators (odetta.ai), after the annotators passed a preliminary trial task. The results were reconciled by an experienced reconciliator. All the labeling was done using Lighttag (lighttag.io).

    Backlinks were obtained from Wikipedia dump data (dumps.wikimedia.org/enwiki/20210701) with intention to have mentions linked to the entities of the Entity dataset. The backlinks were filtered to leave only mentions in a good quality text; each text was cut 1000 characters after the last mention.

    Usage NotesEntities:
    

    File: Namesakes_entities.jsonl The Entities dataset consists of 4148 Wikipedia text chunks containing human-tagged mentions of entities. Each mention is tagged either as "Same" (meaning that the mention is of this Wikipedia page entity), or "Other" (meaning that the mention is of some other entity, just having the same or similar name). The Entities dataset is a jsonl list, each item is a dictionary with the following keys and values: Key: ‘pagename’: page name of the Wikipedia page. Key ‘pageid’: page id of the Wikipedia page. Key ‘title’: title of the Wikipedia page. Key ‘url’: URL of the Wikipedia page. Key ‘text’: The text chunk from the Wikipedia page. Key ‘entities’: list of the mentions in the page text, each entity is represented by a dictionary with the keys: Key 'text': the mention as a string from the page text. Key ‘start’: start character position of the entity in the text. Key ‘end’: end (one-past-last) character position of the entity in the text. Key ‘tag’: annotation tag given as a string - either ‘Same’ or ‘Other’.

    News: File: Namesakes_news.jsonl The News dataset consists of 1000 news text chunks, each one with a single annotated entity mention. The annotation either points to the corresponding entity from the Entities dataset (if the mention is of that entity), or indicates that the mentioned entity does not belong to the Entities dataset. The News dataset is a jsonl list, each item is a dictionary with the following keys and values: Key ‘id_text’: Id of the sample. Key ‘text’: The text chunk. Key ‘urls’: List of URLs of wikipedia entities suggested to labelers for identification of the entity mentioned in the text. Key ‘entity’: a dictionary describing the annotated entity mention in the text: Key 'text': the mention as a string found by an NER model in the text. Key ‘start’: start character position of the mention in the text. Key ‘end’: end (one-past-last) character position of the mention in the text. Key 'tag': This key exists only if the mentioned entity is annotated as belonging to the Entities dataset - if so, the value is a dictionary identifying the Wikipedia page assigned by annotators to the mentioned entity: Key ‘pageid’: Wikipedia page id. Key ‘pagetitle’: page title. Key 'url': page URL.

    Backlinks dataset: The Backlinks dataset consists of two parts: dictionary Entity-to-Backlinks and Backlinks documents. The dictionary points to backlinks for each entity of the Entity dataset (if any backlinks exist for the entity). The Backlinks documents are the backlinks Wikipedia text chunks with identified mentions of the entities from the Entities dataset.

    Each mention is identified by surrounded double square brackets, e.g. "Muir built a small cabin along [[Yosemite Creek]].". However, if the mention differs from the exact entity name, the double square brackets wrap both the exact name and, separated by '|', the mention string to the right, for example: "Muir also spent time with photographer [[Carleton E. Watkins | Carleton Watkins]] and studied his photographs of Yosemite.".

    The Entity-to-Backlinks is a jsonl with 1527 items. File: Namesakes_backlinks_entities.jsonl Each item is a tuple: Entity name. Entity Wikipedia page id. Backlinks ids: a list of pageids of backlink documents.

    The Backlinks documents is a jsonl with 26903 items. File: Namesakes_backlinks_texts.jsonl Each item is a dictionary: Key ‘pageid’: Id of the Wikipedia page. Key ‘title’: Title of the Wikipedia page. Key 'content': Text chunk from the Wikipedia page, with all mentions in the double brackets; the text is cut 1000 characters after the last mention, the cut is denoted as '...[CUT]'. Key 'mentions': List of the mentions from the text, for convenience. Each mention is a tuple: Entity name. Entity Wikipedia page id. Sorted list of all character indexes at which the mention occurrences start in the text.

  5. P

    GENTER Dataset

    • paperswithcode.com
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Drechsel; Steffen Herbold (2025). GENTER Dataset [Dataset]. https://paperswithcode.com/dataset/genter
    Explore at:
    Dataset updated
    Feb 25, 2025
    Authors
    Jonathan Drechsel; Steffen Herbold
    Description

    This dataset consists of template sentences associating first names ([NAME]) with third-person singular pronouns ([PRONOUN]), e.g., [NAME] asked , not sounding as if [PRONOUN] cared about the answer . after all , [NAME] was the same as [PRONOUN] 'd always been . there were moments when [NAME] was soft , when [PRONOUN] seemed more like the person [PRONOUN] had been .

    Usage python genter = load_dataset('aieng-lab/genter', trust_remote_code=True, split=split) split can be either train, val, test, or all.

    Dataset Details Dataset Description

    This dataset is a filtered version of BookCorpus containing only sentences where a first name is followed by its correct third-person singular pronoun (he/she). Based on these sentences, template sentences (masked) are created including two template keys: [NAME] and [PRONOUN]. Thus, this dataset can be used to generate various sentences with varying names (e.g., from aieng-lab/namexact) and filling in the correct pronoun for this name.

    This dataset is a filtered version of BookCorpus that includes only sentences where a first name appears alongside its correct third-person singular pronoun (he/she).

    From these sentences, template-based sentences (masked) are created with two template keys: [NAME] and [PRONOUN]. This design allows the dataset to generate diverse sentences by varying the names (e.g., using names from aieng-lab/namexact) and inserting the appropriate pronoun for each name.

    Dataset Sources

    Repository: github.com/aieng-lab/gradiend Original Data: BookCorpus

    NOTE: This dataset is derived from BookCorpus, for which we do not have publication rights. Therefore, this repository only provides indices, names and pronouns referring to GENTER entries within the BookCorpus dataset on Hugging Face. By using load_dataset('aieng-lab/genter', trust_remote_code=True, split='all'), both the indices and the full BookCorpus dataset are downloaded locally. The indices are then used to construct the GENEUTRAL dataset. The initial dataset generation takes a few minutes, but subsequent loads are cached for faster access.

    Dataset Structure

    text: the original entry of BookCorpus masked: the masked version of text, i.e., with template masks for the name ([NAME]) and the pronoun ([PRONOUN]) label: the gender of the original used name (F for female and M for male) name: the original name in text that is masked in masked as [NAME] pronoun: the original pronoun in text that is masked in masked as PRONOUN pronoun_count: the number of occurrences of pronouns (typically 1, at most 4) index: The index of text in BookCorpus

    Examples: index | text | masked | label | name | pronoun | pronoun_count ------|------|--------|-------|------|---------|-------------- 71130173 | jessica asked , not sounding as if she cared about the answer . | [NAME] asked , not sounding as if [PRONOUN] cared about the answer . | M | jessica | she | 1 17316262 | jeremy looked around and there were many people at the campsite ; then he looked down at the small keg . | [NAME] looked around and there were many people at the campsite ; then [PRONOUN] looked down at the small keg . | F | jeremy | he | 1 41606581 | tabitha did n't seem to notice as she swayed to the loud , thrashing music . | [NAME] did n't seem to notice as [PRONOUN] swayed to the loud , thrashing music . | M | tabitha | she | 1 52926749 | gerald could come in now , have a look if he wanted . | [NAME] could come in now , have a look if [PRONOUN] wanted . | F | gerald | he | 1 47875293 | chapter six as time went by , matthew found that he was no longer certain that he cared for journalism . | chapter six as time went by , [NAME] found that [PRONOUN] was no longer certain that [PRONOUN] cared for journalism . | F | matthew | he | 2 73605732 | liam tried to keep a straight face , but he could n't hold back a smile . | [NAME] tried to keep a straight face , but [PRONOUN] could n't hold back a smile . | F | liam | he | 1 31376791 | after all , ella was the same as she 'd always been . | after all , [NAME] was the same as [PRONOUN] 'd always been . | M | ella | she | 1 61942082 | seth shrugs as he hops off the bed and lands on the floor with a thud . | [NAME] shrugs as [PRONOUN] hops off the bed and lands on the floor with a thud . | F | seth | he | 1 68696573 | graham 's eyes meet mine , but i 'm sure there 's no way he remembers what he promised me several hours ago until he stands , stretching . | [NAME] 's eyes meet mine , but i 'm sure there 's no way [PRONOUN] remembers what [PRONOUN] promised me several hours ago until [PRONOUN] stands , stretching . | F | graham | he | 3 28923447 | grief tore through me-the kind i had n't known would be possible to feel again , because i had felt this when i 'd held caleb as he died . | grief tore through me-the kind i had n't known would be possible to feel again , because i had felt this when i 'd held [NAME] as [PRONOUN] died . | F | caleb | he | 1

    Dataset Creation Curation Rationale

    For the training of a gender bias GRADIEND model, a diverse dataset associating first names with both, its factual and counterfactual pronoun associations, to assess gender-related gradient information.

    Source Data

    The dataset is derived from BookCorpus by filtering it and extracting the template structure.

    We selected BookCorpus as foundational dataset due to its focus on fictional narratives where characters are often referred to by their first names. In contrast, the English Wikipedia, also commonly used for the training of transformer models, was less suitable for our purposes. For instance, sentences like [NAME] Jackson was a musician, [PRONOUN] was a great singer may be biased towards the name Michael.

    Data Collection and Processing

    We filter the entries of BookCorpus and include only sentences that meet the following criteria:

    Each sentence contains at least 50 characters Exactly one name of aieng-lab/namexact is contained, ensuringa correct name match. No other names from a larger name dataset (aieng-lab/namextend) are included, ensuring that only a single name appears in the sentence. The correct name's gender-specific third-person pronoun (he or she) is included at least once. All occurrences of the pronoun appear after the name in the sentence. The counterfactual pronoun does not appear in the sentence. The sentence excludes gender-specific reflexive pronouns (himself, herself) and possesive pronouns (his, her, him, hers) Gendered nouns (e.g., actor, actress, ...) are excluded, based on a gemdered-word dataset with 2421 entries.

    This approach generated a total of 83772 sentences. To further enhance data quality, we employed s imple BERT model (bert-base-uncased) as a judge model. This model must predict the correct pronoun for selected names with high certainty, otherwise, sentences may contain noise or ambiguous terms not caught by the initial filtering. Specifically, we used 50 female and 50 male names from the (aieng-lab/namextend) train split, and a correct prediction means the correct pronoun token is predicted as the token with the highest probability in the induced Masked Language Modeling (MLM) task. Only sentences for which the judge model correctly predicts the pronoun for every test case were retrained, resulting in a total of 27031 sentences.

    The data is split into training (87.5%), validation (2.5%) and test (10%) subsets.

    Bias, Risks, and Limitations

    Due to BookCorpus, only lower-case sentences are contained.

  6. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  7. h

    fun-club-name-generator-dataset

    • huggingface.co
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitchell (2025). fun-club-name-generator-dataset [Dataset]. https://huggingface.co/datasets/Laurenfromhere/fun-club-name-generator-dataset
    Explore at:
    Dataset updated
    Apr 5, 2025
    Authors
    Mitchell
    Description

    Fun Club Name Generator Dataset

    This is a small, handcrafted dataset of random and fun club name ideas.The goal is to help people who are stuck naming something — whether it's a book club, a gaming group, a project, or just a Discord server between friends.

      Why this?
    

    A few friends and I spent hours trying to name a casual group — everything felt cringey, too serious, or already taken. We started writing down names that made us laugh, and eventually collected enough to… See the full description on the dataset page: https://huggingface.co/datasets/Laurenfromhere/fun-club-name-generator-dataset.

  8. u

    Labelled FHYA Dataset

    • zivahub.uct.ac.za
    txt
    Updated Feb 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarryd Dunn (2022). Labelled FHYA Dataset [Dataset]. http://doi.org/10.25375/uct.19029692.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 2, 2022
    Dataset provided by
    University of Cape Town
    Authors
    Jarryd Dunn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This collection contains a the datasets created as part of a masters thesis. The collection consists of two datasets in two forms as well as the corresponding entity descriptions for each of the datasets.The experiment_doc_labels_clean documents contain the data used for the experiments. The JSON file consists of a list of JSON objects. The JSON objects contain the following fields: id: Document idner_tags: List of IOB tags indicating mention boundaries based on the majority label assigned using crowdsourcing.el_tags: List of entity ids based on the majority label assigned using crowdsourcing.all_ner_tags: List of lists of IOB tags assigned by each of the users.all_el_tags: List of lists of entity IDs assigned by each of the users annotating the data.tokens: List of tokens from the text.The experiment_doc_labels_clean-U.tsv contains the dataset used for the experiments but in in a format similar to the CoNLL-U format. The first line for each document contains the document ID. The documents are separated by a blank line. Each word in a document is on its own line consisting of the word the IOB tag and the entity id separated by tags.While the experiments were being completed the annotation system was left open until all the documents had been annotated by three users. This resulted in the all_docs_complete_labels_clean.json and all_docs_complete_labels_clean-U.tsv datasets. The all_docs_complete_labels_clean.json and all_docs_complete_labels_clean-U.tsv documents take the same form as the experiment_doc_labels_clean.json and experiment_doc_labels_clean-U.tsv.Each of the documents described above contain an entity id. The IDs match to the entities stored in the entity_descriptions CSV files. Each of row in these files corresponds to a mention for an entity and take the form:{ID}${Mention}${Context}[N]Three sets of entity descriptions are available:1. entity_descriptions_experiments.csv: This file contains all the mentions from the subset of the data used for the experiments as described above. However, the data has not been cleaned so there are multiple entity IDs which actually refer to the same entity.2. entity_descriptions_experiments_clean.csv: These entities also cover the data used for the experiments, however, duplicate entities have been merged. These entities correspond to the labels for the documents in the experiment_doc_labels_clean files.3. entity_descriptions_all.csv: The entities in this file correspond to the data in the all_docs_complete_labels_clean. Please note that the entities have not been cleaned so there may be duplicate or incorrect entities.

  9. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  10. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  11. a

    Facebook Names Dataset

    • academictorrents.com
    bittorrent
    Updated Nov 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron Bowes (Skull Security) (2015). Facebook Names Dataset [Dataset]. https://academictorrents.com/details/e54c73099d291605e7579b90838c2cd86a8e9575
    Explore at:
    bittorrent(2991052604)Available download formats
    Dataset updated
    Nov 11, 2015
    Dataset authored and provided by
    Ron Bowes (Skull Security)
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    171 million names (100 million unique) This torrent contains: The URL of every searchable Facebook user s profile The name of every searchable Facebook user, both unique and by count (perfect for post-processing, datamining, etc) Processed lists, including first names with count, last names with count, potential usernames with count, etc The programs I used to generate everything So, there you have it: lots of awesome data from Facebook. Now, I just have to find one more problem with Facebook so I can write "Revenge of the Facebook Snatchers" and complete the trilogy. Any suggestions? >:-) Limitations So far, I have only indexed the searchable users, not their friends. Getting their friends will be significantly more data to process, and I don t have those capabilities right now. I d like to tackle that in the future, though, so if anybody has any bandwidth they d like to donate, all I need is an ssh account and Nmap installed. An additional limitation is that these are on

  12. Popular Baby Names - Dataset - data.sa.gov.au

    • data.sa.gov.au
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Popular Baby Names - Dataset - data.sa.gov.au [Dataset]. https://data.sa.gov.au/data/dataset/popular-baby-names
    Explore at:
    Dataset updated
    Mar 1, 2025
    Dataset provided by
    Government of South Australiahttp://sa.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Australia
    Description

    List of male and female baby names in South Australia from 1944 to 2024. The annual data for baby names is published January/February each year.

  13. NLUCat

    • zenodo.org
    • huggingface.co
    • +1more
    zip
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2024). NLUCat [Dataset]. http://doi.org/10.5281/zenodo.10721193
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NLUCat

    Dataset Description

    Dataset Summary

    NLUCat is a dataset of NLU in Catalan. It consists of nearly 12,000 instructions annotated with the most relevant intents and spans. Each instruction is accompanied, in addition, by the instructions received by the annotator who wrote it.

    The intents taken into account are the habitual ones of a virtual home assistant (activity calendar, IOT, list management, leisure, etc.), but specific ones have also been added to take into account social and healthcare needs for vulnerable people (information on administrative procedures, menu and medication reminders, etc.).

    The spans have been annotated with a tag describing the type of information they contain. They are fine-grained, but can be easily grouped to use them in robust systems.

    The examples are not only written in Catalan, but they also take into account the geographical and cultural reality of the speakers of this language (geographic points, cultural references, etc.)

    This dataset can be used to train models for intent classification, spans identification and examples generation.

    This is the complete version of the dataset. A version prepared to train and evaluate intent classifiers has been published in HuggingFace.

    In this repository you'll find the following items:

    • NLUCat_annotation_guidelines.docx: the guidelines provided to the annotation team
    • NLUCat_dataset.json: the completed NLUCat dataset
    • NLUCat_stats.tsv: statistics about de NLUCat dataset
    • dataset: folder with the dataset as published in HuggingFace, splited and prepared for training and evaluating intent classifiers
    • reports: folder with the reports done as feedback to the annotators during the annotation process

    This dataset can be used for any purpose, whether academic or commercial, under the terms of the CC BY 4.0. Give appropriate credit , provide a link to the license, and indicate if changes were made.

    Supported Tasks and Leaderboards

    Intent classification, spans identification and examples generation.

    Languages

    The dataset is in Catalan (ca-ES).

    Dataset Structure

    Data Instances

    Three JSON files, one for each split.

    Data Fields

    • example: `str`. Example
    • annotation: `dict`. Annotation of the example
    • intent: `str`. Intent tag
    • slots: `list`. List of slots
    • Tag:`str`. tag to the slot
    • Text:`str`. Text of the slot
    • Start_char: `int`. First character of the span
    • End_char: `int`. Last character of the span

    Example


    An example looks as follows:

    {
    "example": "Demana una ambulància; la meva dona està de part.",
    "annotation": {
    "intent": "call_emergency",
    "slots": [
    {
    "Tag": "service",
    "Text": "ambulància",
    "Start_char": 11,
    "End_char": 21
    },
    {
    "Tag": "situation",
    "Text": "la meva dona està de part",
    "Start_char": 23,
    "End_char": 48
    }
    ]
    }
    },


    Data Splits

    • NLUCat.train: 9128 examples
    • NLUCat.dev: 1441 examples
    • NLUCat.test: 1441 examples

    Dataset Creation

    Curation Rationale

    We created this dataset to contribute to the development of language models in Catalan, a low-resource language.

    When creating this dataset, we took into account not only the language but the entire socio-cultural reality of the Catalan-speaking population. Special consideration was also given to the needs of the vulnerable population.

    Source Data

    Initial Data Collection and Normalization

    We commissioned a company to create fictitious examples for the creation of this dataset.

    Who are the source language producers?

    We commissioned the writing of the examples to the company m47 labs.

    Annotations

    Annotation process

    The elaboration of this dataset has been done in three steps, taking as a model the process followed by the NLU-Evaluation-Data dataset, as explained in the paper.
    * First step: translation or elaboration of the instructions given to the annotators to write the examples.
    * Second step: writing the examples. This step also includes the grammatical correction and normalization of the texts.
    * Third step: recording the attempts and the slots of each example. In this step, some modifications were made to the annotation guides to adjust them to the real situations.

    Who are the annotators?

    The drafting of the examples and their annotation was entrusted to the company m47 labs through a public tender process.

    Personal and Sensitive Information

    No personal or sensitive information included.

    The examples used for the preparation of this dataset are fictitious and, therefore, the information shown is not real.

    Considerations for Using the Data

    Social Impact of Dataset

    We hope that this dataset will help the development of virtual assistants in Catalan, a language that is often not taken into account, and that it will especially help to improve the quality of life of people with special needs.

    Discussion of Biases

    When writing the examples, the annotators were asked to take into account the socio-cultural reality (geographic points, artists and cultural references, etc.) of the Catalan-speaking population.
    Likewise, they were asked to be careful to avoid examples that reinforce the stereotypes that exist in this society. For example: be careful with the gender or origin of personal names that are associated with certain activities.

    Other Known Limitations

    [N/A]

    Additional Information

    Dataset Curators

    Language Technologies Unit at the Barcelona Supercomputing Center (langtech@bsc.es)

    This work has been promoted and financed by the Generalitat de Catalunya through the Aina project.

    Licensing Information

    This dataset can be used for any purpose, whether academic or commercial, under the terms of the CC BY 4.0.
    Give appropriate credit, provide a link to the license, and indicate if changes were made.

    Citation Information

    DOI

    Contributions

    The drafting of the examples and their annotation was entrusted to the company m47 labs through a public tender process.

  14. d

    Insurance complaints: All data

    • catalog.data.gov
    • data.texas.gov
    • +2more
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Insurance complaints: All data [Dataset]. https://catalog.data.gov/dataset/insurance-complaints-all-data
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    ► The Texas Department of Insurance (TDI) handles complaints against people and organizations licensed by TDI, such as companies, agents, and adjusters. To learn more, go to the TDI webpage, How to get help with an insurance issue or file a complaint.&nbsp ► This dataset includes a row for each person and organization named in a complaint. This means some complaint numbers are listed multiple times. To view a dataset that lists each complaint number once due to removing the “Complaint filed against” column, use TDI Complaints: One Record / Complaint.

  15. US state county name & codes

    • kaggle.com
    Updated Jun 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VivekMangipudi (2017). US state county name & codes [Dataset]. https://www.kaggle.com/stansilas/us-state-county-name-codes/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2017
    Dataset provided by
    Kaggle
    Authors
    VivekMangipudi
    Area covered
    United States
    Description

    Context

    There is no story behind this data.

    These are just supplementary datasets which I plan on using for plotting county wise data on maps.. (in particular for using with my kernel : https://www.kaggle.com/stansilas/maps-are-beautiful-unemployment-is-not/)
    As that data set didn't have the info I needed for plotting an interactive map using highcharter .

    Content

    Since I noticed that most demographic datasets here on Kaggle, either have state code, state name, or county name + state name but not all of it i.e county name, fips code, state name + state code.

    Using these two datasets one can get any combination of state county codes etc.

    States.csv has State name + code
    US counties.csv has county wise data.

    Acknowledgements

    Picture : https://unsplash.com/search/usa-states?photo=-RO2DFPl7wE
    Counties : https://www.census.gov/geo/reference/codes/cou.html
    State :

    Inspiration

    Not Applicable.

  16. Z

    INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4047647
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Nafiz Sadman
    Kishor Datta Gupta
    Nishat Anjum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    The headline must have one or more words directly or indirectly related to COVID-19.

    The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.

    The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.

    Avoid taking duplicate reports.

    Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    Remove hyperlinks.

    Remove non-English alphanumeric characters.

    Remove stop words.

    Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics

    No of words per headline

    7 to 20

    No of words per body content

    150 to 2100

    Table 2: Covid-News-BD-NNK data statistics No of words per headline

    10 to 20

    No of words per body content

    100 to 1500

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    In February, both the news paper have talked about China and source of the outbreak.

    StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.

    Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.

    Washington Post discussed global issues more than StarTribune.

    StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.

    While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,

  17. P

    Who’s Waldo Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Aug 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claire Yuqing Cui; Apoorv Khandelwal; Yoav Artzi; Noah Snavely; Hadar Averbuch-Elor (2021). Who’s Waldo Dataset [Dataset]. https://paperswithcode.com/dataset/whos-waldo
    Explore at:
    Dataset updated
    Aug 15, 2021
    Authors
    Claire Yuqing Cui; Apoorv Khandelwal; Yoav Artzi; Noah Snavely; Hadar Averbuch-Elor
    Description

    Who's Waldo is a dataset of 270K image–caption pairs, depicting interactions of people, that is automatically mined from Wikimedia Commons. It is a benchmark dataset for person-centric visual grounding, the problem of linking between people named in a caption and people pictured in an image.

  18. o

    Notices of Name Changes

    • data.ontario.ca
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Consumer Services (2021). Notices of Name Changes [Dataset]. https://data.ontario.ca/dataset/notices-of-name-changes
    Explore at:
    (None)Available download formats
    Dataset updated
    Dec 9, 2021
    Dataset authored and provided by
    Government and Consumer Services
    License

    https://www.ontario.ca/page/copyright-informationhttps://www.ontario.ca/page/copyright-information

    Time period covered
    Oct 5, 2016
    Area covered
    Ontario
    Description

    This dataset contains a listing of individuals who have had their name formally changed in Ontario.

    This data is made publicly available through the Ontario Gazette.

  19. f

    Distribution of first name and last name frequencies by country

    • figshare.com
    xlsx
    Updated Feb 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mike Thelwall (2023). Distribution of first name and last name frequencies by country [Dataset]. http://doi.org/10.6084/m9.figshare.21956795.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 2, 2023
    Dataset provided by
    figshare
    Authors
    Mike Thelwall
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Distribution of first and last name frequencies of academic authors by country.

    Spreadsheet 1 contains 50 countries, with names based on affiliations in Scopus journal articles 2001-2021.

    Spreadsheet 2 contains 200 countries, with names based on affiliations in Scopus journal articles 2001-2021, using a marginally updated last name extraction algorithm that is almost the same except for Dutch/Flemish names.

    From the paper: Can national researcher mobility be tracked by first or last name uniqueness?

    For example the distribution for the UK shows a single peak for international names, with no national names, Belgium has a national peak and an international peak, and China has mainly a national peak. The 50 countries are:

    No Code Country 1 SB Serbia 2 IE Ireland 3 HU Hungary 4 CL Chile 5 CO Columbia 6 NG Nigeria 7 HK Hong Kong 8 AR Argentina 9 SG Singapore 10 NZ New Zealand 11 PK Pakistan 12 TH Thailand 13 UA Ukraine 14 SA Saudi Arabia 15 RO Israel 16 ID Indonesia 17 IL Israel 18 MY Malaysia 19 DK Denmark 20 CZ Czech Republic 21 ZA South Africa 22 AT Austria 23 FI Finland 24 PT Portugal 25 GR Greece 26 NO Norway 27 EG Egypt 28 MX Mexico 29 BE Belgium 30 CH Switzerland 31 SW Sweden 32 PL Poland 33 TW Taiwan 34 NL Netherlands 35 TK Turkey 36 IR Iran 37 RU Russia 38 AU Australia 39 BR Brazil 40 KR South Korea 41 ES Spain 42 CA Canada 43 IT France 44 FR France 45 IN India 46 DE Germany 47 US USA 48 UK UK 49 JP Japan 50 CN China

  20. Dataset of Burkhardt 2022 Encyclopaedia of Eponymic Plant Names

    • zenodo.org
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heather Lynn Lindon; Heather Lynn Lindon; Sabine von Mering; Sabine von Mering; Siobhan Leachman; Siobhan Leachman; Carmen Ulloa Ulloa; Carmen Ulloa Ulloa (2025). Dataset of Burkhardt 2022 Encyclopaedia of Eponymic Plant Names [Dataset]. http://doi.org/10.5281/zenodo.14551490
    Explore at:
    Dataset updated
    Apr 29, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Heather Lynn Lindon; Heather Lynn Lindon; Sabine von Mering; Sabine von Mering; Siobhan Leachman; Siobhan Leachman; Carmen Ulloa Ulloa; Carmen Ulloa Ulloa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author Lotte Burkhardt published in 2022 a free PDF entitled Encyclopedia of Eponymic Plant names. It consisted of two volumes, one listing all plant, algae, lichen, fossil plant, and fungal genera with the person they were named after. The other volume takes the list of people honored and lists the genera named after them. It can be found online here.

    This dataset was created by Carmen Ulloa Ulloa by scraping the PDF of the A-Z names of people honored and converting it into a Google Sheet. That data were normalized with each row representing a person and the eponymic genera and the associated families split into multiple columns to make analysis easier. The data was then cleaned as the conversion from PDF was not 100% accurate with some names being split onto multiple lines, characters misread etc. The gender of the authors were annotated by the Women Plant Genera working group as part of our follow up work to a previous paper.

    We have split the resulting table into three files. The first one contains the entire list of people honoured and the genera named for them. The other two are the first table split into just the flowering plant genera and the other one excludes plant genera.

    Most of the women in the plants-only tab have been marked up from this project. More information could be added to the women for whom non-plant genera were named. We highly encourage anyone who is interested in an analysis of their own based on this data to do so, and get in touch with us with any questions. We anticipate that work on additional groups will deepen our understanding of the impact of the contributions women have made to botany. Our hope is that by making this dataset publically available others will explore the world of genera and eponomy, looking at interesting stories of people for whom genera were named.

    The team would be greatful for any updates or corrections to this data, and we plan to publish updated versions of this dataset accordingly.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Data.gov (2019). USA Name Data [Dataset]. https://www.kaggle.com/datasets/datagov/usa-names
Organization logo

USA Name Data

USA Name Data (BigQuery Dataset)

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Feb 12, 2019
Dataset provided by
Data.govhttps://data.gov/
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
United States
Description

Context

Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States

Content

This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.

All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.

Fork this kernel to get started with this dataset.

Acknowledgements

https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names

https://cloud.google.com/bigquery/public-data/usa-names

Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

Banner Photo by @dcp from Unplash.

Inspiration

What are the most common names?

What are the most common female names?

Are there more female or male names?

Female names by a wide margin?

Search
Clear search
Close search
Google apps
Main menu