100+ datasets found
  1. US Electric Grid Outages

    • kaggle.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2025). US Electric Grid Outages [Dataset]. http://doi.org/10.34740/kaggle/dsv/11245146
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    Kaggle
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The United States electric grid, a vast and complex infrastructure, has experienced numerous outages from 2002 to 2023, with causes ranging from extreme weather events to cyberattacks and aging infrastructure. The resilience of the grid has been tested repeatedly as demand for electricity continues to grow while climate change exacerbates the frequency and intensity of storms, wildfires, and other natural disasters.

    Between 2002 and 2023, the U.S. Department of Energy recorded thousands of power outages, varying in scale from localized blackouts to large-scale regional failures affecting millions. The Northeast blackout of 2003 was one of the most significant, impacting 50 million people across the United States and Canada. A software bug in an alarm system prevented operators from recognizing and responding to transmission line failures, leading to a cascading effect that took hours to contain and days to restore completely.

    Weather-related disruptions have been among the most common causes of outages, particularly hurricanes, ice storms, and heatwaves. In 2005, Hurricane Katrina devastated the Gulf Coast, knocking out power for over 1.7 million customers. Similarly, in 2012, Hurricane Sandy caused widespread destruction in the Northeast, leaving over 8 million customers in the dark. More recently, the Texas winter storm of February 2021 resulted in one of the most catastrophic power failures in state history. Unusually cold temperatures overwhelmed the state’s independent power grid, leading to equipment failures, frozen natural gas pipelines, and rolling blackouts that lasted days. The event highlighted vulnerabilities in grid preparedness for extreme weather, particularly in regions unaccustomed to such conditions.

    Wildfires in California have also played a significant role in grid outages. The state's largest utility companies, such as Pacific Gas and Electric (PG&E), have implemented preemptive power shutoffs to reduce wildfire risks during high-wind events. These Public Safety Power Shutoffs (PSPS) have affected millions of residents, causing disruptions to businesses, emergency services, and daily life. The 2018 Camp Fire, the deadliest and most destructive wildfire in California history, was ignited by faulty PG&E transmission lines, leading to increased scrutiny over utility maintenance and fire mitigation efforts.

    In addition to natural disasters, cyber threats have emerged as a growing concern for the U.S. electric grid. In 2015 and 2016, Russian-linked cyberattacks targeted Ukraine’s power grid, serving as a stark warning of the potential vulnerabilities in American infrastructure. In 2021, the Colonial Pipeline ransomware attack, while not directly targeting the electric grid, demonstrated how critical energy infrastructure could be compromised, leading to widespread fuel shortages and economic disruptions. Federal agencies and utility companies have since ramped up investments in cybersecurity measures to protect against potential attacks.

    Aging infrastructure remains another pressing issue. Many parts of the U.S. grid were built decades ago and have not kept pace with modern energy demands or technological advancements. The shift towards renewable energy sources, such as solar and wind, presents new challenges for grid stability, requiring updated transmission systems and improved energy storage solutions. Federal and state governments have initiated grid modernization efforts, including investments in smart grids, microgrids, and battery storage to enhance resilience and reliability.

    Looking forward, the future of the U.S. electric grid depends on continued investments in infrastructure, cybersecurity, and climate resilience. With the increasing electrification of transportation and industry, demand for reliable and clean energy will only grow. Policymakers, utility companies, and regulators must collaborate to address vulnerabilities, adapt to emerging threats, and ensure a more robust, efficient, and sustainable electric grid for the decades to come.

  2. Statewide Power Outages (Public View)

    • gis.data.ca.gov
    • data.ca.gov
    • +3more
    Updated Aug 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2018). Statewide Power Outages (Public View) [Dataset]. https://gis.data.ca.gov/maps/439afad071eb4754903906aff1946719
    Explore at:
    Dataset updated
    Aug 22, 2018
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    Description

    The power outages in this layer are pulled directly from the utility public power outage maps and is automatically updated every 15 minutes. This dataset represents only the most recent power outages and does not contain any historical data. The following utility companies are included:Pacific Gas and Electric (PG&E)Southern California Edison (SCE)San Diego Gas and Electric (SDG&E)Sacramento Municipal Utility District (SMUD)Los Angeles Water & Power (LAWP)Layers included in this dataset:Power Outage Incidents - Point layer that shows data from all of the utilities and is best for showing a general location of the outage and driving any numbers in dashboards.Power Outage Areas - Polygon layer that shows rough power outage areas from PG&E only (They are the only company that feeds this out publicly). With in the PG&E territory this layer is useful to show the general area out of power. The accuracy is limited by how the areas are drawn, but is it good for a visual of the impacted area.Power Outages by County - This layer summaries the total impacted customers by county. This layer is good for showing where outages are on a statewide scale.If you have any questions about this dataset please email GIS@caloes.ca.gov

  3. Global electricity consumption 1980-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global electricity consumption 1980-2023 [Dataset]. https://www.statista.com/statistics/280704/world-power-consumption/
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Over the past half a century, the world's electricity consumption has continuously grown, reaching approximately 27,000 terawatt-hours by 2023. Between 1980 and 2023, electricity consumption more than tripled, while the global population reached eight billion people. Growth in industrialization and electricity access across the globe have further boosted electricity demand. China's economic rise and growth in global power use Since 2000, China's GDP has recorded an astonishing 15-fold increase, turning it into the second-largest global economy, behind only the United States. To fuel the development of its billion-strong population and various manufacturing industries, China requires more energy than any other country. As a result, it has become the largest electricity consumer in the world. Electricity consumption per capita In terms of per capita electricity consumption, China and other BRIC countries are still vastly outpaced by developed economies with smaller population sizes. Iceland, with a population of less than half a million inhabitants, consumes by far the most electricity per person in the world. Norway, Qatar, Canada, and the United States also have among the highest consumption rates. Multiple contributing factors such as the existence of power-intensive industries, household sizes, living situations, appliance and efficiency standards, and access to alternative heating fuels determine the amount of electricity the average person requires in each country.

  4. w

    Dataset of books called Denying democracy : how the IMF and World Bank take...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Denying democracy : how the IMF and World Bank take power from people [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Denying+democracy+%3A+how+the+IMF+and+World+Bank+take+power+from+people
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Denying democracy : how the IMF and World Bank take power from people. It features 7 columns including author, publication date, language, and book publisher.

  5. c

    Tudor Networks of Power - correspondence network dataset

    • repository.cam.ac.uk
    application/gzip, txt
    Updated Oct 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahnert, Ruth; Ahnert, Sebastian; Cree, Jose; Fikkers, Lotte (2023). Tudor Networks of Power - correspondence network dataset [Dataset]. http://doi.org/10.17863/CAM.99562.2
    Explore at:
    txt(2449 bytes), application/gzip(2172391 bytes)Available download formats
    Dataset updated
    Oct 4, 2023
    Dataset provided by
    Apollo
    University of Cambridge
    Authors
    Ahnert, Ruth; Ahnert, Sebastian; Cree, Jose; Fikkers, Lotte
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Tudor Networks of Power - Correspondence Network Dataset

    Ruth Ahnert, Sebastian E. Ahnert, Jose Cree, and Lotte Fikkers

    © 2023. This work is licensed under a CC BY-NC-SA 4.0 license. If using this dataset, please cite:

    • R. Ahnert, S E. Ahnert, "Tudor Networks of Power", Oxford University Press, 2023.

    • R. Ahnert, S. E. Ahnert, J. Cree, & L. Fikkers, "Tudor Networks of Power - correspondence network dataset". Apollo - University of Cambridge Repository (2023). https://doi.org/10.17863/CAM.99562

    The data is released under a Creative Commons BY-NC-SA 4.0 license, which: - requires attribution - permits distribution, remixing, adaptation, or building upon this data as long as the modified material is licensed under identical terms - only permits non-commercial uses of the work

    This data contains a temporal, directed edgelist representing (to the best of our knowledge) all items of correspondence in the Tudor State Papers (1509-1603), which are the official government records of the Tudor period in England. The data covers State Papers Domestic and Foreign.

    The dataset was created by first extracting the relevant XML metadata of the State Papers Online resource developed by Gale Cengage. We would like to acknowledge the help and support that Gale Cengage provided for our research. The XML metadata closely corresponds to the State Papers Calendars of the 19th century. These contain many ambiguities regarding the identities of people and places, resulting in an extensive effort on our part to disambiguate and de-duplicate person identities and places of writing. The details of this process can be found in our book (see citation above).

    The dataset contains:

    • 'letter_edgelist.tsv' - Directed temporal edge list of letters
    • 'people_labels.tsv' - Key for the person IDs used in letter_edgelist.tsv
    • 'place_labels.tsv' - Key for the place IDs used in letter_edgelist.tsv
    • 'people_metadata.tsv' - Additional metadata and URIs for a subset of people
    • 'places_metadata.tsv' - Geolocations and metadata for a large subset of places

    Both the code and more extensive datasets that give context to the data curation process, the network analysis methods, and quantitative results in the book can be found at https://github.com/tudor-networks-of-power/code.

  6. n

    AirNow Air Quality Monitoring Data (Current) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). AirNow Air Quality Monitoring Data (Current) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/airnow-air-quality-monitoring-data-current
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.

  7. Online Sales Data Power BI Dashboard

    • kaggle.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    manjeshkumar05 (2024). Online Sales Data Power BI Dashboard [Dataset]. https://www.kaggle.com/datasets/manjeshkumar05/online-sales-data-power-bi-dashboard
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    manjeshkumar05
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Exploring Online Sales Data with Power BI !!

    Another productive day diving into online sales dataset! Here’s a roundup of the insights I uncovered today:

    Revenue by Category: Analyzed revenue distribution across different product categories to identify high-performing sectors.

    Revenue by Sub-Category: Drilled down into sub-categories for a more granular view of revenue streams.

    Revenue by Payment Mode: Examined revenue patterns based on payment methods to understand customer preferences.

    Revenue by State: Mapped out revenue by state to pinpoint geographical strengths and opportunities.

    Profit by Category: Evaluated profitability across product categories to assess which categories yield the highest profit margins.

    Profit by Sub-Category: Explored profit levels at a sub-category level to identify the most profitable segments.

    Profit by Payment Mode: Analyzed profit distribution across different payment methods.

    Top 5 States by Revenue and Profit: Highlighted the top 5 states driving the most revenue and profit, offering insights into regional performance.

    Sales Map by State: Visualized sales data on a map to provide a geographical perspective on sales distribution.

    Total Quantity, Revenue, and Profit: Aggregated data to give an overview of total quantities sold, overall revenue, and total profit.

    Filter by Category: Added a filter functionality to focus on specific categories and refine data analysis.

  8. d

    Review Dataset [Consumer Sentiment] – Annotated feedback to power...

    • datarade.ai
    Updated Mar 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WiserBrand.com (2024). Review Dataset [Consumer Sentiment] – Annotated feedback to power emotion-aware models and CX strategy [Dataset]. https://datarade.ai/data-products/review-dataset-consumer-sentiment-annotated-feedback-to-p-wiserbrand-com
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 9, 2024
    Dataset provided by
    WiserBrand.com
    Area covered
    Andorra, Ireland, United States of America, Monaco, Croatia, Estonia, Luxembourg, Holy See, Denmark, Latvia
    Description

    "This dataset includes millions of consumer reviews tagged with emotion signals, making it ideal for training AI systems to detect how people feel — not just what they say. Built for sentiment-aware product development, CX strategy, and emotional behavior modeling, it offers deep insight into real consumer experience.

    Features include:

    -Labeled review sentiment (positive, neutral, negative) -Retail product and service context (e.g., delivery, pricing, quality) -Touchpoint mapping (pre-purchase, usage, return, support) -Optional region, channel, and timestamp data

    The list may vary based on the industry and can be customized as per your request.

    This dataset enables:

    -Training empathetic AI agents and emotion-detecting LLMs -Mapping customer sentiment across retail segments or journey stages -dentifying emotional drivers behind repeat purchases and churn -Benchmarking brand sentiment versus competitors -Segmenting user feedback for trend and CX impact analysis

    Available in clean, structured formats and optimized for large-scale NLP, this dataset is indispensable for data science, product, and CX teams focused on emotional intelligence and experience-driven growth."

  9. a

    Catholic Carbon Footprint Summary Dashboard

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Summary Dashboard [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/456fa8d2472541529a006719bd8e3745
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  10. o

    Replication Data for: Power to the People or Regulatory Ratcheting?...

    • openicpsr.org
    • dataverse.harvard.edu
    • +1more
    stata
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Aldrich; Eric Berndt (2016). Replication Data for: Power to the People or Regulatory Ratcheting? Explaining the Success (or Failure) of Attempts to Site Commercial U.S. Nuclear Power Plants: 1954-1996 [Dataset]. http://doi.org/10.3886/E100127V1
    Explore at:
    stataAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Purdue University
    Authors
    Daniel Aldrich; Eric Berndt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North America, United States
    Description

    Between 1954 and 1996, more than 200 nuclear power projects were publicly announced in the USA. Barely half of these projects were completed and generated power commercially. Existing research has highlighted a number of potential explanations for the varying siting outcomes of these projects, including contentious political protest, socioeconomic, and political conditions within potential host communities, regulatory changes (‘ratcheting’), and cost overruns. However, questions remain about which of these factors, if any, had an impact on these outcomes. We created a new data set of 228 host communities where siting was attempted to illuminate the factors that led projects towards either completion or cancellation. We include county-level regulatory, reactor-specific, demographic, and political factors which may correlate with the outcomes of attempts to site nuclear reactors over this time period. The full draft of our forthcoming peer reviewed article in International Journal of Energy Research can be found at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2423935. We include the Stata dataset, the codebook, and the .do file used to create the statistical analysis for the paper.

  11. Z

    Dataset of IEEE 802.11 probe requests from an uncontrolled urban environment...

    • data.niaid.nih.gov
    Updated Jan 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleš Simončič (2023). Dataset of IEEE 802.11 probe requests from an uncontrolled urban environment [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7509279
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset provided by
    Mihael Mohorčič
    Aleš Simončič
    Andrej Hrovat
    Miha Mohorčič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    The 802.11 standard includes several management features and corresponding frame types. One of them are Probe Requests (PR), which are sent by mobile devices in an unassociated state to scan the nearby area for existing wireless networks. The frame part of PRs consists of variable-length fields, called Information Elements (IE), which represent the capabilities of a mobile device, such as supported data rates.

    This dataset contains PRs collected over a seven-day period by four gateway devices in an uncontrolled urban environment in the city of Catania.

    It can be used for various use cases, e.g., analyzing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analyzing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.

    Related dataset

    Same authors also produced the Labeled dataset of IEEE 802.11 probe requests with same data layout and recording equipment.

    Measurement setup

    The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture WiFi signal traffic in monitoring mode (gateway device). Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.

    The following information about each received PR is collected: - MAC address - Supported data rates - extended supported rates - HT capabilities - extended capabilities - data under extended tag and vendor specific tag - interworking - VHT capabilities - RSSI - SSID - timestamp when PR was received.

    The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package to collect, preprocess, and transmit the data.

    Data preprocessing

    The gateway collects PRs for each successive predefined scan interval (10 seconds). During this interval, the data is preprocessed before being transmitted to the database. For each detected PR in the scan interval, the IEs fields are saved in the following JSON structure:

    PR_IE_data = { 'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext}, 'HT_CAP': DATA_htcap, 'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap}, 'VHT_CAP': DATA_vhtcap, 'INTERWORKING': DATA_inter, 'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...}, 'VENDOR_SPEC': {VENDOR_1:{ 'ID_1': DATA_1_vendor1, 'ID_2': DATA_2_vendor1 ...}, VENDOR_2:{ 'ID_1': DATA_1_vendor2, 'ID_2': DATA_2_vendor2 ...} ...} }

    Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
    Missing IE fields in the captured PR are not included in PR_IE_DATA.

    When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:

    {'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },

    where PR_data is structured as follows:

    { 'TIME': [ DATA_time ], 'RSSI': [ DATA_rssi ], 'DATA': PR_IE_data }.

    This data structure allows to store only 'TOA' and 'RSSI' for all PRs originating from the same MAC address and containing the same 'PR_IE_data'. All SSIDs from the same MAC address are also stored. The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval. If identical PR's IE data from the same MAC address is already stored, only data for the keys 'TIME' and 'RSSI' are appended. If identical PR's IE data from the same MAC address has not yet been received, then the PR_data structure of the new PR for that MAC address is appended to the 'PROBE_REQs' key. The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png

    At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data, such as the serial number of the wireless gateway and the timestamps for the start and end of the scan. For an example of a single PR capture, see the Single_PR_capture_example.json file.

    Folder structure

    For ease of processing of the data, the dataset is divided into 7 folders, each containing a 24-hour period. Each folder contains four files, each containing samples from that device.

    The folders are named after the start and end time (in UTC). For example, the folder 2022-09-22T22-00-00_2022-09-23T22-00-00 contains samples collected between 23th of September 2022 00:00 local time, until 24th of September 2022 00:00 local time.

    Files representing their location via mapping: - 1.json -> location 1 - 2.json -> location 2 - 3.json -> location 3 - 4.json -> location 4

    Environments description

    The measurements were carried out in the city of Catania, in Piazza Università and Piazza del Duomo The gateway devices (rPIs with WiFi dongle) were set up and gathering data before the start time of this dataset. As of September 23, 2022, the devices were placed in their final configuration and personally checked for correctness of installation and data status of the entire data collection system. Devices were connected either to a nearby Ethernet outlet or via WiFi to the access point provided.

    Four Raspbery Pi-s were used: - location 1 -> Piazza del Duomo - Chierici building (balcony near Fontana dell’Amenano) - location 2 -> southernmost window in the building of Via Etnea near Piazza del Duomo - location 3 -> nothernmost window in the building of Via Etnea near Piazza Università - location 4 -> first window top the right of the entrance of the University of Catania

    Locations were suggested by the authors and adjusted during deployment based on physical constraints (locations of electrical outlets or internet access) Under ideal circumstances, the locations of the devices and their coverage area would cover both squares and the part of Via Etna between them, with a partial overlap of signal detection. The locations of the gateways are shown in Figure ./Figures/catania.png.

    Known dataset shortcomings

    Due to technical and physical limitations, the dataset contains some identified deficiencies.

    PRs are collected and transmitted in 10-second chunks. Due to the limited capabilites of the recording devices, some time (in the range of seconds) may not be accounted for between chunks if the transmission of the previous packet took too long or an unexpected error occurred.

    Every 20 minutes the service is restarted on the recording device. This is a workaround for undefined behavior of the USB WiFi dongle, which can no longer respond. For this reason, up to 20 seconds of data will not be recorded in each 20-minute period.

    The devices had a scheduled reboot at 4:00 each day which is shown as missing data of up to a few minutes.

     Location 1 - Piazza del Duomo - Chierici
    

    The gateway device (rPi) is located on the second floor balcony and is hardwired to the Ethernet port. This device appears to function stably throughout the data collection period. Its location is constant and is not disturbed, dataset seems to have complete coverage.

     Location 2 - Via Etnea - Piazza del Duomo
    

    The device is located inside the building. During working hours (approximately 9:00-17:00), the device was placed on the windowsill. However, the movement of the device cannot be confirmed. As the device was moved back and forth, power outages and internet connection issues occurred. The last three days in the record contain no PRs from this location.

     Location 3 - Via Etnea - Piazza Università
    

    Similar to Location 2, the device is placed on the windowsill and moved around by people working in the building. Similar behavior is also observed, e.g., it is placed on the windowsill and moved inside a thick wall when no people are present. This device appears to have been collecting data throughout the whole dataset period.

     Location 4 - Piazza Università
    

    This location is wirelessly connected to the access point. The device was placed statically on a windowsill overlooking the square. Due to physical limitations, the device had lost power several times during the deployment. The internet connection was also interrupted sporadically.

    Recognitions

    The data was collected within the scope of Resiloc project with the help of City of Catania and project partners.

  12. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attac

  13. Infrastructure Climate Resilience Assessment Data Starter Kit for Nepal

    • zenodo.org
    zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for Nepal [Dataset]. http://doi.org/10.5281/zenodo.10796765
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  14. n

    FOI-01915 - Datasets - Open Data Portal

    • opendata.nhsbsa.net
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FOI-01915 - Datasets - Open Data Portal [Dataset]. https://opendata.nhsbsa.net/dataset/foi-01915
    Explore at:
    Dataset updated
    Jun 5, 2024
    Description

    On 10 May you clarified: The dates I'm requesting are from 2010 to the present day as this was when this current government came into power Response I can confirm that the NHSBSA holds the information you have requested • 1,081,286 cases have paid the penalty charge in full • 219,940 cases have paid both the penalty charge and the surcharge in full. • No one has been taken to court. Please read the below notes to ensure correct understanding of the data: • We do not hold data for how many individual people have paid a fine. The data provided is based on the number of cases, rather than the number of individuals, where a fine has been paid. • We have included any cases that are classed as fully paid and have paid either the penalty charge or both the penalty charge and surcharge. • This data is correct as of 20th May 2024. • The Prescription Exemption Checking Service started in 2014. The data provided is therefore from 2014 to 20th May 2024. Publishing this response Please note that this information will be published on our Freedom of Information disclosure log at: https://opendata.nhsbsa.net/dataset/foi-01915

  15. F

    Finnish Product Image OCR Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Finnish Product Image OCR Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/finnish-product-image-ocr-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Finnish Product Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Finnish language.

    Dataset Contain & Diversity:

    Containing a total of 2000 images, this Finnish OCR dataset offers diverse distribution across different types of front images of Products. In this dataset, you'll find a variety of text that includes product names, taglines, logos, company names, addresses, product content, etc. Images in this dataset showcase distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build a robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Finnish text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, to build a balanced OCR dataset. The collection features images in portrait and landscape modes.

    All these images were captured by native Finnish people to ensure the text quality, avoid toxic content and PII text. We used the latest iOS and Android mobile devices above 5MP cameras to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data, you will also receive detailed structured metadata in CSV format. For each image, it includes metadata like image orientation, county, language, and device information. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of Finnish text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native Finnish crowd community.

    If you require a custom product image OCR dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific project requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this product image OCR dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the Finnish language. Your journey to enhanced language understanding and processing starts here.

  16. Total consumption of electric power in Ghana 2001-2029

    • statista.com
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Total consumption of electric power in Ghana 2001-2029 [Dataset]. https://www.statista.com/topics/9442/electricity-in-ghana/
    Explore at:
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Ghana
    Description

    The total electric power consumption in Ghana was forecast to continuously increase between 2024 and 2029 by in total 0.01 million kilowatt hours (+100 percent). The electric power consumption is estimated to amount to 0.02 million kilowatt hours in 2029. Depicted is the estimated electric power consumption per capita in the country or region at hand. Both demand from private households as industrial consumption are included in the figures.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the total electric power consumption in countries like Ivory Coast and Senegal.

  17. F

    Polish Product Image OCR Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Polish Product Image OCR Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/polish-product-image-ocr-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Polish Product Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Polish language.

    Dataset Contain & Diversity:

    Containing a total of 2000 images, this Polish OCR dataset offers diverse distribution across different types of front images of Products. In this dataset, you'll find a variety of text that includes product names, taglines, logos, company names, addresses, product content, etc. Images in this dataset showcase distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build a robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Polish text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, to build a balanced OCR dataset. The collection features images in portrait and landscape modes.

    All these images were captured by native Polish people to ensure the text quality, avoid toxic content and PII text. We used the latest iOS and Android mobile devices above 5MP cameras to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data, you will also receive detailed structured metadata in CSV format. For each image, it includes metadata like image orientation, county, language, and device information. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of Polish text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native Polish crowd community.

    If you require a custom product image OCR dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific project requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this product image OCR dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the Polish language. Your journey to enhanced language understanding and processing starts here.

  18. F

    Portuguese Product Image OCR Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Portuguese Product Image OCR Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/portuguese-product-image-ocr-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Portuguese Product Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Portuguese language.

    Dataset Contain & Diversity:

    Containing a total of 2000 images, this Portuguese OCR dataset offers diverse distribution across different types of front images of Products. In this dataset, you'll find a variety of text that includes product names, taglines, logos, company names, addresses, product content, etc. Images in this dataset showcase distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build a robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Portuguese text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, to build a balanced OCR dataset. The collection features images in portrait and landscape modes.

    All these images were captured by native Portuguese people to ensure the text quality, avoid toxic content and PII text. We used the latest iOS and Android mobile devices above 5MP cameras to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data, you will also receive detailed structured metadata in CSV format. For each image, it includes metadata like image orientation, county, language, and device information. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of Portuguese text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native Portuguese crowd community.

    If you require a custom product image OCR dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific project requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this product image OCR dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the Portuguese language. Your journey to enhanced language understanding and processing starts here.

  19. F

    French Newspaper, Magazine, and Books OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). French Newspaper, Magazine, and Books OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/french-newspaper-book-magazine-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    French
    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the French Newspaper, Books, and Magazine Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the French language.

    Dataset Contain & Diversity:

    Containing a total of 5000 images, this French OCR dataset offers an equal distribution across newspapers, books, and magazines. Within, you'll find a diverse collection of content, including articles, advertisements, cover pages, headlines, call outs, and author sections from a variety of newspapers, books, and magazines. Images in this dataset showcases distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personal identifiable information (PII), and in each image a minimum of 80% space is contain visible French text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, further enhancing dataset diversity. The collection features images in portrait and landscape modes.

    All these images were captured by native French people to ensure the text quality, avoid toxic content and PII text. We used latest iOS and android mobile devices above 5MP camera to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data you will also receive detailed structured metadata in CSV format. For each image it includes metadata like device information, source type like newspaper, magazine or book image, and image type like portrait or landscape etc. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of French text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native French crowd community.

    If you require a custom dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this image dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the French language. Your journey to enhanced language understanding and processing starts here.

  20. F

    Bahasa Product Image OCR Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Product Image OCR Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/bahasa-product-image-ocr-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Bahasa Product Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Bahasa language.

    Dataset Contain & Diversity:

    Containing a total of 2000 images, this Bahasa OCR dataset offers diverse distribution across different types of front images of Products. In this dataset, you'll find a variety of text that includes product names, taglines, logos, company names, addresses, product content, etc. Images in this dataset showcase distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build a robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Bahasa text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, to build a balanced OCR dataset. The collection features images in portrait and landscape modes.

    All these images were captured by native Bahasa people to ensure the text quality, avoid toxic content and PII text. We used the latest iOS and Android mobile devices above 5MP cameras to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data, you will also receive detailed structured metadata in CSV format. For each image, it includes metadata like image orientation, county, language, and device information. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of Bahasa text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native Bahasa crowd community.

    If you require a custom product image OCR dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific project requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this product image OCR dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the Bahasa language. Your journey to enhanced language understanding and processing starts here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
willian oliveira (2025). US Electric Grid Outages [Dataset]. http://doi.org/10.34740/kaggle/dsv/11245146
Organization logo

US Electric Grid Outages

Electric outages reported to the US Department of Energy from 2002-2023.

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 1, 2025
Dataset provided by
Kaggle
Authors
willian oliveira
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

The United States electric grid, a vast and complex infrastructure, has experienced numerous outages from 2002 to 2023, with causes ranging from extreme weather events to cyberattacks and aging infrastructure. The resilience of the grid has been tested repeatedly as demand for electricity continues to grow while climate change exacerbates the frequency and intensity of storms, wildfires, and other natural disasters.

Between 2002 and 2023, the U.S. Department of Energy recorded thousands of power outages, varying in scale from localized blackouts to large-scale regional failures affecting millions. The Northeast blackout of 2003 was one of the most significant, impacting 50 million people across the United States and Canada. A software bug in an alarm system prevented operators from recognizing and responding to transmission line failures, leading to a cascading effect that took hours to contain and days to restore completely.

Weather-related disruptions have been among the most common causes of outages, particularly hurricanes, ice storms, and heatwaves. In 2005, Hurricane Katrina devastated the Gulf Coast, knocking out power for over 1.7 million customers. Similarly, in 2012, Hurricane Sandy caused widespread destruction in the Northeast, leaving over 8 million customers in the dark. More recently, the Texas winter storm of February 2021 resulted in one of the most catastrophic power failures in state history. Unusually cold temperatures overwhelmed the state’s independent power grid, leading to equipment failures, frozen natural gas pipelines, and rolling blackouts that lasted days. The event highlighted vulnerabilities in grid preparedness for extreme weather, particularly in regions unaccustomed to such conditions.

Wildfires in California have also played a significant role in grid outages. The state's largest utility companies, such as Pacific Gas and Electric (PG&E), have implemented preemptive power shutoffs to reduce wildfire risks during high-wind events. These Public Safety Power Shutoffs (PSPS) have affected millions of residents, causing disruptions to businesses, emergency services, and daily life. The 2018 Camp Fire, the deadliest and most destructive wildfire in California history, was ignited by faulty PG&E transmission lines, leading to increased scrutiny over utility maintenance and fire mitigation efforts.

In addition to natural disasters, cyber threats have emerged as a growing concern for the U.S. electric grid. In 2015 and 2016, Russian-linked cyberattacks targeted Ukraine’s power grid, serving as a stark warning of the potential vulnerabilities in American infrastructure. In 2021, the Colonial Pipeline ransomware attack, while not directly targeting the electric grid, demonstrated how critical energy infrastructure could be compromised, leading to widespread fuel shortages and economic disruptions. Federal agencies and utility companies have since ramped up investments in cybersecurity measures to protect against potential attacks.

Aging infrastructure remains another pressing issue. Many parts of the U.S. grid were built decades ago and have not kept pace with modern energy demands or technological advancements. The shift towards renewable energy sources, such as solar and wind, presents new challenges for grid stability, requiring updated transmission systems and improved energy storage solutions. Federal and state governments have initiated grid modernization efforts, including investments in smart grids, microgrids, and battery storage to enhance resilience and reliability.

Looking forward, the future of the U.S. electric grid depends on continued investments in infrastructure, cybersecurity, and climate resilience. With the increasing electrification of transportation and industry, demand for reliable and clean energy will only grow. Policymakers, utility companies, and regulators must collaborate to address vulnerabilities, adapt to emerging threats, and ensure a more robust, efficient, and sustainable electric grid for the decades to come.

Search
Clear search
Close search
Google apps
Main menu