The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
Percentage of smartphone users by selected smartphone use habits in a typical day.
This web map visualizes the prevalence of households in a given geography that do not own a computer, smartphone, or tablet. Data are shown by tract, county, and state boundaries -- zoom out to see data visualized for larger geographies. The map also displays the boundary lines for the jurisdiction of Rochester, NY (visible when viewing the tract level data), as this map was created for a Rochester audience.This web map draws from an Esri Demographics service that is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2014-2018ACS Table(s): B28001, B28002 (Not all lines of ACS table B28002 are available in this feature layer)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 19, 2019National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
Percentage of Canadians using a smartphone for personal use and selected habits of use during a typical day.
The number of smartphone users in Ireland was forecast to continuously increase between 2024 and 2029 by in total 0.3 million users (+6.15 percent). After the seventh consecutive increasing year, the smartphone user base is estimated to reach 5.22 million users and therefore a new peak in 2029. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Serbia and Sweden.
Series Name: Proportion of individuals who own a mobile telephone by sex (percent)Series Code: IT_MOB_OWNRelease Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 5.b.1: Proportion of individuals who own a mobile telephone, by sexTarget 5.b: Enhance the use of enabling technology, in particular information and communications technology, to promote the empowerment of womenGoal 5: Achieve gender equality and empower all women and girlsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
This forecast shows the number of smartphone users in France from 2018 to 2024. For 2020, the number of smartphone users in France is estimated to reach 47.18 million, with the number of smartphone users worldwide forecast to exceed 2 billion users by that time. From 2018 to 2024 the number of smartphone users in France is expected to grow by close to four million users. This equates to a growth in the share of users by 26.26 percent. The data was calculated in July 2018 and covers all individuals of any age who own one or more smartphones and use at least one of those devices every month.
The leading operating system on the the French market is Android with a 75.6 percent market share followed by Apple's iOS with a 18.8 percent share. Most individuals without a smartphone still owned a regular mobile phone and only 7 percent of the population did not own either. The most common smartphone owned in January 2017 was the Apple iPhone 7 followed by the iPhone 7 Plus. The three most common activities carried out weekly with a smartphone were the use of search engines, checking email accounts, and visiting social networks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 150 countries was 118.2 subscribers per 100 people. The highest value was in Hong Kong: 291.91 subscribers per 100 people and the lowest value was in Mozambique: 42.07 subscribers per 100 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
There are a total of 17 questions in the survey, addressing the following categories:Internet useMobile phone use (smartphones & basic voice/SMS phones)Awareness and use of WikipediaGeneral demographicsThe survey collected 2500 total responses, representing populations in 5 geographical regions served by 3 mobile Iraqi operators. 3 language choices (Arabic, English, Kurdish) were provided.Here are the main questions this survey was designed to answer. However, analyzing the full data set allows you to conduct more in-depth data explorations and gain meaningful insights beyond the points presented here.What is the actual number of people who use the internet?(Real-world behavior makes this difficult to measure from industry reports, since people might have access to the internet through school, friends, internet cafés, public Wifi, etc.)For internet users: What do people mostly use the internet for?For non-internet users: Why not use the internet?How many people use smartphones?Do people with smartphones use the internet from just Wifi? Or just cellular service?How many people think that they don’t use the internet, but still use Facebook or WhatsApp?How many people have heard of Wikipedia? What do they use it for? How often?If they have heard of Wikipedia, but aren’t using it, why not?Compared to previous phone surveys in other countries, the 2017 Iraq phone survey presented new questions.What are people’s awareness of other major internet brands in comparison to Wikipedia?Can people find online content in their preferred language?How does data cost impact internet use?
To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.
The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.
Two harmonized datafiles are prepared for each survey. The two datafiles are:
1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales.
2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.
National
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
See “Uganda - National Panel Survey 2019-2020” and “Uganda - High-Frequency Phone Survey on COVID-19 2020-2021” documentations available in the Microdata Library for details.
Computer Assisted Personal Interview [capi]
Uganda National Panel Survey 2019-2020 and Uganda High-Frequency Phone Survey on COVID-19 2020-2021 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).
The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.
See “Uganda - National Panel Survey 2019-2020” and “Uganda - High-Frequency Phone Survey on COVID-19 2020-2021” documentations available in the Microdata Library for details.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, The Global NFC enabled Handsets market will grow at a compound annual growth rate (CAGR) of 20.50% from 2023 to 2030.
The demand for NFC enabled handsets is rising due to increasing demand for mobile payments.
Demand for feature phones remains higher in the NFC enabled handsets market.
The mobile payment category held the highest NFC enabled handsets market revenue share in 2023.
North America will continue to lead, whereas the Asia Pacific NFC enabled handsets market will experience the most robust growth until 2030.
Increasing Demand for Mobile Payments to Drive Market Growth
Mobile payments using NFC enabled handsets offer a faster and more convenient alternative to traditional payment methods. Users can complete transactions with a simple tap, reducing the time spent at the checkout. The increasing penetration of smartphones, including NFC enabled handsets, provides a larger user base for mobile payment solutions. As more people own smartphones, the potential for mobile payments grows.
Smartphone shipments from India reached 168 million units in 2021, and it is anticipated that they will reach 190 million units in 2022.
(Source: www.ibef.org/industry/electronics-system-design-manufacturing-esdm)
Mobile wallet applications like Apple Pay, Google Pay, and Samsung Pay have gained traction. These wallets rely on NFC technology and have become increasingly integrated into daily routines. Mobile payments extend beyond physical retail stores. Users can make online and in-app purchases using their NFC enabled handsets, broadening the scope of mobile payment applications.
Growing Adoption of Wearable Technology to Drive Market Growth
Wearable devices, especially smartwatches, are increasingly used for mobile ticketing applications. Users can store electronic tickets for public transportation, events, or flights on their wearables, simplifying ticketing. Some banks and financial institutions offer apps that are compatible with wearable devices. Users can check their account balances, receive transaction alerts, and even make mobile payments using NFC enabled wearables.
Exports of electronic goods increased by 50.52% from US$ 15.66 billion in FY22 to US$ 23.57 billion in FY23, a record high.
(Source: www.ibef.org/industry/electronics-system-design-manufacturing-esdm)
NFC enabled wearables are used for health and fitness applications. Users can tap their devices to collect data from fitness equipment, make payments for health services, or even access their medical records securely.
Market Dynamics Of the NFC enabled Handsets
Lack of Awareness and Education to Hinder Market Growth
The lack of education about the various applications of NFC technology can result in a limited understanding of its potential use cases beyond mobile payments. This can hinder the development of new NFC-based services. The lack of awareness about NFC security features can lead to unfounded concerns and reluctance to use NFC enabled handsets for secure transactions. Some individuals and businesses may perceive NFC technology as too complex or difficult to implement. This can discourage exploration and adoption.
Key Trends of the NFC enabled Handsets
The Rapid Increase in the Use of Contactless Payments and Digital Wallets
With the worldwide growth of mobile payment systems such as Google Pay, Apple Pay, and Samsung Pay, there is a significant demand for NFC-enabled smartphones. Consumers are favoring fast, secure, and touchless transactions, particularly in the aftermath of the pandemic, which has led to a rise in the incorporation of NFC chips in mid-range and entry-level devices across various markets.
Integration with IoT and Smart Ecosystems
NFC-enabled smartphones are being utilized increasingly for purposes beyond payments, including pairing with smart devices, access control, ticketing, and identity verification. As smart home technologies, wearables, and interconnected infrastructure expand, NFC devices act as a central hub, enhancing their importance in everyday digital interactions.
Impact of COVID-19 on the NFC enabled handsets market
COVID-19, both positive and negative, significantly impacted the market for NFC enabled smartphones. The pandemic accelerated the adoption of contactless payment methods due to concerns about the transmission of the virus through ...
In 2022, the average data used per smartphone per month worldwide amounted to 15 gigabytes (GB). The source forecasts that this will increase almost four times reaching 46 GB per smartphone per month globally in 2028.
This study was undertaken to obtain information on the characteristics of gun ownership, gun-carrying practices, and weapons-related incidents in the United States -- specifically, gun use and other weapons used in self-defense against humans and animals. Data were gathered using a national random-digit-dial telephone survey. The respondents were comprised of 1,905 randomly-selected adults aged 18 and older living in the 50 United States. All interviews were completed between May 28 and July 2, 1996. The sample was designed to be a representative sample of households, not of individuals, so researchers did not interview more than one adult from each household. To start the interview, six qualifying questions were asked, dealing with (1) gun ownership, (2) gun-carrying practices, (3) gun display against the respondent, (4) gun use in self-defense against animals, (5) gun use in self-defense against people, and (6) other weapons used in self-defense. A "yes" response to a qualifying question led to a series of additional questions on the same topic as the qualifying question. Part 1, Survey Data, contains the coded data obtained during the interviews, and Part 2, Open-Ended-Verbatim Responses, consists of the answers to open-ended questions provided by the respondents. Information collected for Part 1 covers how many firearms were owned by household members, types of firearms owned (handguns, revolvers, pistols, fully automatic weapons, and assault weapons), whether the respondent personally owned a gun, reasons for owning a gun, type of gun carried, whether the gun was ever kept loaded, kept concealed, used for personal protection, or used for work, and whether the respondent had a permit to carry the gun. Additional questions focused on incidents in which a gun was displayed in a hostile manner against the respondent, including the number of times such an incident took place, the location of the event in which the gun was displayed against the respondent, whether the police were contacted, whether the individual displaying the gun was known to the respondent, whether the incident was a burglary, robbery, or other planned assault, and the number of shots fired during the incident. Variables concerning gun use by the respondent in self-defense against an animal include the number of times the respondent used a gun in this manner and whether the respondent was hunting at the time of the incident. Other variables in Part 1 deal with gun use in self-defense against people, such as the location of the event, if the other individual knew the respondent had a gun, the type of gun used, any injuries to the respondent or to the individual that required medical attention or hospitalization, whether the incident was reported to the police, whether there were any arrests, whether other weapons were used in self-defense, the type of other weapon used, location of the incident in which the other weapon was used, and whether the respondent was working as a police officer or security guard or was in the military at the time of the event. Demographic variables in Part 1 include the gender, race, age, household income, and type of community (city, suburb, or rural) in which the respondent lived. Open-ended questions asked during the interview comprise the variables in Part 2. Responses include descriptions of where the respondent was when he or she displayed a gun (in self-defense or otherwise), specific reasons why the respondent displayed a gun, how the other individual reacted when the respondent displayed the gun, how the individual knew the respondent had a gun, whether the police were contacted for specific self-defense events, and if not, why not.
North America registered the highest mobile data consumption per connection in 2023, with the average connection consuming 29 gigabytes per month. This figure is set to triple by 2030, driven by the adoption of data intensive activities such as 4K streaming.
Sign Up for a free trial: https://rampedup.io/sign-up-%2F-log-in - 7 Days and 50 Credits to test our quality and accuracy.
These are the fields available within the RampedUp Global dataset.
CONTACT DATA: Personal Email Address - We manage over 115 million personal email addresses Professional Email - We manage over 200 million professional email addresses Home Address - We manage over 20 million home addresses Mobile Phones - 65 million direct lines to decision makers Social Profiles - Individual Facebook, Twitter, and LinkedIn Local Address - We manage 65M locations for local office mailers, event-based marketing or face-to-face sales calls.
JOB DATA: Job Title - Standardized titles for ease of use and selection Company Name - The Contact's current employer Job Function - The Company Department associated with the job role Title Level - The Level in the Company associated with the job role Job Start Date - Identify people new to their role as a potential buyer
EMPLOYER DATA: Websites - Company Website, Root Domain, or Full Domain Addresses - Standardized Address, City, Region, Postal Code, and Country Phone - E164 phone with country code Social Profiles - LinkedIn, CrunchBase, Facebook, and Twitter
FIRMOGRAPHIC DATA: Industry - 420 classifications for categorizing the company’s main field of business Sector - 20 classifications for categorizing company industries 4 Digit SIC Code - 239 classifications and their definitions 6 Digit NAICS - 452 classifications and their definitions Revenue - Estimated revenue and bands from 1M to over 1B Employee Size - Exact employee count and bands Email Open Scores - Aggregated data at the domain level showing relationships between email opens and corporate domains. IP Address -Company level IP Addresses associated to Domains from a DNS lookup
CONSUMER DATA:
Education - Alma Mater, Degree, Graduation Date
Skills - Accumulated Skills associated with work experience
Interests - Known interests of contact
Connections - Number of social connections.
Followers - Number of social followers
Download our data dictionary: https://rampedup.io/our-data
Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Voice & Data 3G Smartphones was estimated at $45 billion in 2023 and is projected to reach $60 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 3.2% during the forecast period. This growth is driven by several factors including technological advancements, increased consumer demand for reliable and affordable smartphones, and expanding internet penetration in emerging markets.
One of the primary growth factors is the increasing penetration of internet services in developing countries. As more people gain access to the internet, the demand for smartphones capable of providing voice and data services, like 3G smartphones, has surged. Additionally, smartphone manufacturers are increasingly focusing on budget-friendly models that cater to the lower-income groups, thereby expanding the customer base. Governments around the world are also playing a crucial role by promoting digital inclusion initiatives, which further boosts the adoption of 3G smartphones.
Another significant factor contributing to the market growth is the ongoing technological advancements in smartphone manufacturing. Improvements in battery life, processing power, and camera quality have made 3G smartphones more appealing to consumers. Moreover, the integration of additional features like enhanced security measures, user-friendly interfaces, and advanced connectivity options such as Bluetooth and Wi-Fi has further amplified their attractiveness. These technological advancements are not only enhancing user experience but also encouraging replacements and upgrades, contributing to market growth.
The affordability factor cannot be overlooked either. 3G smartphones are often more affordable compared to their 4G and 5G counterparts, making them an attractive option for budget-conscious consumers. As the middle class in various regions continues to expand, the demand for cost-effective yet reliable smartphones is expected to rise. The availability of various financing options and installment plans by retailers and telecom operators also makes it easier for consumers to purchase these devices, thereby driving the market.
The evolution of the Mobile Phone Operating System has been a pivotal factor in the growth of the 3G smartphone market. Operating systems like Android and iOS have revolutionized how users interact with their devices, offering seamless integration with various applications and services. These systems provide a platform for developers to create a wide array of apps, enhancing the functionality and appeal of smartphones. As the demand for more intuitive and user-friendly interfaces grows, operating systems continue to evolve, incorporating features such as voice recognition, AI-driven assistants, and enhanced security measures. This evolution not only improves the user experience but also drives the adoption of smartphones across diverse demographics.
On the regional front, Asia Pacific is expected to dominate the Voice & Data 3G Smartphone market during the forecast period. The regionÂ’s large population base, combined with increasing disposable incomes and rapid urbanization, creates a fertile ground for market expansion. Countries like India and China are leading the charge, driven by their massive consumer bases and robust economic growth. Additionally, the presence of major smartphone manufacturers in this region ensures a steady supply of affordable and technologically advanced 3G smartphones, further supporting market growth.
The operating system is a critical segment in the Voice & Data 3G Smartphone market, comprising Android, iOS, Windows, and others. Android holds a significant share of this market due to its open-source nature, which allows for extensive customization and a wide range of applications. The affordability and flexibility offered by Android devices make them particularly popular in emerging markets, where cost is a crucial factor. Additionally, the vast ecosystem of applications and services available on the Google Play Store enhances the user experience, making Android the operating system of choice for many consumers.
iOS, Apple's proprietary operating system, also holds a substantial market share, albeit smaller compared to Android. iOS is known for its seamless integration with other Apple products and services, providing a cohesive ecosystem that appeals to a lo
This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.