Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65 percent in the second quarter of 2025 from 65.10 percent in the first quarter of 2025. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rate in the United States (RSAHORUSQ156S) from Q1 1980 to Q2 2025 about housing, rate, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United Kingdom decreased to 64.50 percent in 2023 from 64.70 percent in 2022. This dataset provides the latest reported value for - United Kingdom Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterBy Zillow Data [source]
This dataset, Negative Equity in the US Housing Market, provides an in-depth look into the negative equity occurring across the United States during this single quarter. Included are metrics such as total amount of negative equity in millions of dollars, total number of homes in negative equity, percentage of homes with mortgages that are in negative equity and more. These data points provide helpful insights into both regional and national trends regarding the prevalence and rate of home mortgage delinquency stemming from a diminishment of value from peak levels.
Home types available for analysis include 'all homes', condos/co-ops, multifamily units containing five or more housing units as well as duplexes/triplexes. Additionally, Cash buyers rates for particular areas can also be determined by referencing this collection. Further metrics such as mortgage affordability rates and impacts on overall indebtedness are readily calculated using information related to Zillow's Home Value Index (ZHVI) forecast methodology and TransUnion data respectively.
Other variables featured within this dataset include characteristics like region type (i.e city, county ..etc), size rank based on population values , percentage change in ZHVI since peak levels as well as loan-to-value ratio greater than 200 across all regions constituted herein (NE). Moreover Zillow's own Secondary Mortgage Market Survey data is utilized to acquire average mortgage quote rates while correlative Census Bureau NCHS median household income figures represent typical assessable proportions between wages and debt obligations . So whether you're looking to assess effects along metro lines or detailed buffering through zip codes , this database should prove sufficient for insightful explorations! Nonetheless users must strictly adhere to all conditions encompassed within Terms Of Use commitments put forth by our lead provider before accessing any resources included herewith
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Analyzing regional and state trends in negative equity: Analyze geographic differences in the percentage of mortgages “underwater”, total amount of negative equity, number of homes at least 90 days late, and other key indicators to provide insight into the factors influencing negative equity across regions, states and cities.
- Tracking the recovery rate over time: Track short-term changes in numbers related to negative equity (e.g., region or area ZHVI Change from Peak) to monitor recovery rates over time as well as how different policy interventions are affecting homeownership levels in affected areas.
- Exploring best practices for promoting housing affordability: Compare affordability metrics (e.g., mortgage payments, price-to-income ratios) across different geographic locations over time to identify best practices for empowering homeowners and promoting stability within the housing market while reducing local inequality impacts related to availability of affordable housing options and access to credit markets like mortgages/loans etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: NESummary_2017Q1_Public.csv | Column name | Description | |:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| | RegionType | The type of region (e.g., city, county, metro etc.) (String) | | City | Name of the city (String) | | County | Name of the county (String) | | State | Name of the state (String) | | Metro ...
Facebook
TwitterThe data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]). Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads: (https://www.fs.usda.gov/rds/archive/catalog/RDS-2020-0060-2).Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Source: https://www.census.gov/programs-surveys/ahs/data/2011/ahs-2011-public-use-file-puf/ahs-2011-national-public-use-file-puf.html Further explanation on columns: https://www.census.gov/data-tools/demo/codebook/ahs/ahsdict.html?s_keyword=&s_year=&sortby=
The AHS is sponsored by the Department of Housing and Urban Development (HUD) and conducted by the U.S. Census Bureau. The survey is the most comprehensive national housing survey in the United States.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Selected Housing Characteristics.Table ID.ACSDP1Y2024.DP04.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Data Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of ...
Facebook
TwitterBy Zillow Data [source]
This unique dataset explores the trends in negative equity within US housing markets from 2011 to 2017, allowing users to uncover the various factors and determinants that affected the outcome in each market. With data provided on all home types such as single-family homes, condominiums, and co-ops, as well as special metrics such as cash buyers and affordability analyses, you will be able to gain a comprehensive understanding of how these forces have interacted over time. Using this data you can not only learn more about historical behavior but also make predictions for future trends in these impacts.
In addition to data collected by Zillow through their own internal resources, they have also partnered with TransUnion and other affiliate sources to give an even more precise look into what has been driving these changing dynamics across US housing markets. Such information includes negative equity metrics which allow us to track actual outstanding home-related debt amounts over time - a valuable resource when evaluating potential investments or relocations!
And of course with any dataset there are a few guiding principles that one should take note of before delving in – this is especially true when it comes down to copyright issues or prohibited uses; though all data can be freely obtained here for public use - clear attribution of such information is legally required at all times (as stated on Zillow’s very own Terms & Conditions page). Furthermore additional resources such as Mortgage Rate Series or Jumbo Mortgages are also available through Zillow; again making sure that appropriate disclaimers are read before utilizing them.
Regardless this little treasure trove of knowledge is waiting at your fingertips – whether you’re trying your luck investing wise or just looking for an area where renting rates are equitable compared real estate values; it provides everything you need understand regional housing market fluctuations over the last half decade!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides historical and current trends in negative equity (the amount a mortgage is underwater) across the United States. It contains negative equity data from Zillow, one of the leading real estate data providers. The dataset covers all housing types (including single family, condominiums and co-ops). Additionally, it includes cash buyers share, mortgage affordability index, rental affordability index and other relative measures of affordability for US metro areas. This guide will help you understand how to use this data set for your own analysis.
Overview of Covered Data:
The dataset contains time series data that shows your current trend in negative equity rate as well as some associated metrics across different scales such as region, county, city and MSA level. To access this information you will need to take following columns into consideration while using this data set:
- RegionName: Name of the region (e.g., city/county/MSA)
- SizeRank: Ranking of the region by size
- RegionType: Type of region (e.g., city/county/state)
- StateName: Name of the state
- MSA: Metropolitan Statistical Area FORMAT_4C A4 RINFOX_ RTI Information Exchange File Format [multi value 9] FORMAT_3E A3 FITS Flexible Image Transport System VERSION 4C 3E 1 Language Indicator 0 0 1 1 DONTCOPY 536880031 FILEEXTN 3 Stream Type buffer 'USTD' file version 2 HNEED 8 FILETYPE 'UDIO' creation date 05 FEB 1985 Source FMT0025 APPLICAT TRAINFORM File Organization Spooled Files DF140520 Header Block Length in Words 682 with Header Offset 636 / ULQUACK INTLCHAN * ETBFMT(V7R2),D*RECORD ACCOUNT CRFTIME FT240187 batch process status continuous Availability Continuous Version number V03C02 LOADAT AT04
- Analyzing which markets have been disproportionately affected by the housing crisis and utilizing this information to inform investment strategies and...
Facebook
TwitterThis contains details about home ownership in King County. It has been developed for the Determinant of Equity - Community Economic Development presentation, Home Ownership Rates equity indicator. Fields describe the total number of people (Denominator), number of people that own a home (Numerator), the type of equity indicator being measured (Indicator), and the value that describes this measurement (Indicator Value).
The data for this dataset was compiled from the American Community Survey (ACS) 1-year and 5-year estimates. Vintages
1-year estimates: 2013-2017 5-year estimates: 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018 - 2022
Variables
1-year estimates: B25003 - TENURE 5-year estimates: B25003B - TENURE (BLACK OR AFRICAN AMERICAN ALONE HOUSEHOLDER) - B25003I - TENURE (HISPANIC OR LATINO HOUSEHOLDER), B25093 - AGE OF HOUSEHOLDER BY SELECTED MONTHLY OWNER COSTS AS A PERCENTAGE OF HOUSEHOLD INCOME IN THE PAST 12 MONTHS
For more information about King County's equity efforts, please see:
Equity, Racial & Social Justice Vision Ordinance 16948 describing the determinates of equity Determinants of Equity and Data Tool
Facebook
TwitterThe data on relationship to householder were derived from answers to Question 2 in the 2015 American Community Survey (ACS), which was asked of all people in housing units. The question on relationship is essential for classifying the population information on families and other groups. Information about changes in the composition of the American family, from the number of people living alone to the number of children living with only one parent, is essential for planning and carrying out a number of federal programs. The responses to this question were used to determine the relationships of all persons to the householder, as well as household type (married couple family, nonfamily, etc.). From responses to this question, we were able to determine numbers of related children, own children, unmarried partner households, and multi-generational households. We calculated average household and family size. When relationship was not reported, it was imputed using the age difference between the householder and the person, sex, and marital status. Household – A household includes all the people who occupy a housing unit. (People not living in households are classified as living in group quarters.) A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. Separate living quarters are those in which the occupants live separately from any other people in the building and which have direct access from the outside of the building or through a common hall. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated people who share living arrangements. Average Household Size – A measure obtained by dividing the number of people in households by the number of households. In cases where people in households are cross-classified by race or Hispanic origin, people in the household are classified by the race or Hispanic origin of the householder rather than the race or Hispanic origin of each individual. Average household size is rounded to the nearest hundredth. Comparability – The relationship categories for the most part can be compared to previous ACS years and to similar data collected in the decennial census, CPS, and SIPP. With the change in 2008 from “In-law” to the two categories of “Parent-in-law” and “Son-in-law or daughter-in-law,” caution should be exercised when comparing data on in-laws from previous years. “In-law” encompassed any type of in-law such as sister-in-law. Combining “Parent-in-law” and “son-in-law or daughter-in-law” does not represent all “in-laws” in 2008. The same can be said of comparing the three categories of “biological” “step,” and “adopted” child in 2008 to “Child” in previous years. Before 2008, respondents may have considered anyone under 18 as “child” and chosen that category. The ACS includes “foster child” as a category. However, the 2010 Census did not contain this category, and “foster children” were included in the “Other nonrelative” category. Therefore, comparison of “foster child” cannot be made to the 2010 Census. Beginning in 2013, the “spouse” category includes same-sex spouses.
Facebook
TwitterDefinitions of “urban” and “rural” are abundant in government, academic literature, and data-driven journalism. Equally abundant are debates about what is urban or rural and which factors should be used to define these terms. Absent from most of this discussion is evidence about how people perceive or describe their neighborhood. Moreover, as several housing and demographic researchers have noted, the lack of an official or unofficial definition of suburban obscures the stylized fact that a majority of Americans live in a suburban setting. In 2017, the U.S. Department of Housing and Urban Development added a simple question to the 2017 American Housing Survey (AHS) asking respondents to describe their neighborhood as urban, suburban, or rural. This service provides a tract-level dataset illustrating the outcome of analysis techniques applied to neighborhood classification reported by the American Housing Survey (AHS) as either urban, suburban, or rural.
To create this data, analysts first applied machine learning techniques to the AHS neighborhood description question to build a model that predicts how out-of-sample households would describe their neighborhood (urban, suburban, or rural), given regional and neighborhood characteristics. Analysts then applied the model to the American Community Survey (ACS) aggregate tract-level regional and neighborhood measures, thereby creating a predicted likelihood the average household in a census tract would describe their neighborhood as urban, suburban, and rural. This last step is commonly referred to as small area estimation. The approach is an example of the use of existing federal data to create innovative new data products of substantial interest to researchers and policy makers alike.
If aggregating tract-level probabilities to larger areas, users are strongly encouraged to use occupied household counts as weights.
We recommend users read Section 7 of the working paper before using the raw probabilities. Likewise, we recognize that some users may:
prefer to use an uncontrolled classification, or
prefer to create more than three categories.
To accommodate these uses, our final tract-level output dataset includes the "raw" probability an average household would describe their neighborhood as urban, suburban, and rural. These probability values can be used to create an uncontrolled classification or additional categories.
The final classification is controlled to AHS national estimates (26.9% urban; 52.1% suburban, 21.0% rural).
For more information about the 2017 AHS Neighborhood Description Study click on the following visit: https://www.hud.gov/program_offices/comm_planning/communitydevelopment/programs/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.
Data Dictionary: DD_Urbanization Perceptions Small Area Index.
Facebook
TwitterMost of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers, "HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous." Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. " HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas." These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality." Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Live Oak County, TX by Hawaiian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterThe American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Live Oak County, TX by Romanian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Live Oak County, TX by English population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Live Oak. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Live Oak, the median income for all workers aged 15 years and older, regardless of work hours, was $55,656 for males and $38,659 for females.
These income figures highlight a substantial gender-based income gap in Live Oak. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Live Oak.
- Full-time workers, aged 15 years and older: In Live Oak, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,760, while females earned $53,843, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Live Oak.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Live Oak.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Live Oak County, TX by Croatian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65 percent in the second quarter of 2025 from 65.10 percent in the first quarter of 2025. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.