41 datasets found
  1. Number of smartphone users worldwide 2014-2029

    • statista.com
    • abripper.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of smartphone users worldwide 2014-2029 [Dataset]. https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total *** billion users (+***** percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.

  2. Real World Smartphone's Dataset

    • kaggle.com
    zip
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhijit Dahatonde (2023). Real World Smartphone's Dataset [Dataset]. https://www.kaggle.com/datasets/abhijitdahatonde/real-world-smartphones-dataset
    Explore at:
    zip(17232 bytes)Available download formats
    Dataset updated
    Aug 2, 2023
    Authors
    Abhijit Dahatonde
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides a comprehensive collection of information about all the latest smartphones available in the market as of the current time.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13571604%2Fb608498b1cf7f70b9a22952566197db6%2FScreenshot%202023-08-02%20003740.png?generation=1690961033930490&alt=media" alt="">

    The dataset was created by web scraping reputable online sources to gather accurate and up-to-date information about various smartphone models, their specifications, features, and pricing.

  3. Global smartphone sales to end users 2007-2023

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Global smartphone sales to end users 2007-2023 [Dataset]. https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2022, smartphone vendors sold around 1.39 billion smartphones were sold worldwide, with this number forecast to drop to 1.34 billion in 2023.

    Smartphone penetration rate still on the rise

    Less than half of the world’s total population owned a smart device in 2016, but the smartphone penetration rate has continued climbing, reaching 78.05 percent in 2020. By 2025, it is forecast that almost 87 percent of all mobile users in the United States will own a smartphone, an increase from the 27 percent of mobile users in 2010.

    Smartphone end user sales

    In the United States alone, sales of smartphones were projected to be worth around 73 billion U.S. dollars in 2021, an increase from 18 billion dollars in 2010. Global sales of smartphones are expected to increase from 2020 to 2021 in every major region, as the market starts to recover from the initial impact of the coronavirus (COVID-19) pandemic.

  4. Smartphone users worldwide 2024, by country

    • statista.com
    • abripper.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Smartphone users worldwide 2024, by country [Dataset]. https://www.statista.com/forecasts/1146962/smartphone-user-by-country
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Albania
    Description

    China is leading the ranking by number of smartphone users, recording ****** million users. Following closely behind is India with ****** million users, while Seychelles is trailing the ranking with **** million users, resulting in a difference of ****** million users to the ranking leader, China. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  5. a

    Proportion of individuals who own a mobile telephone, by sex (percent)

    • global-fistula-hub-ucsf.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Feb 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2021). Proportion of individuals who own a mobile telephone, by sex (percent) [Dataset]. https://global-fistula-hub-ucsf.hub.arcgis.com/datasets/DirectRelief::proportion-of-individuals-who-own-a-mobile-telephone-by-sex-percent
    Explore at:
    Dataset updated
    Feb 9, 2021
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    Series Name: Proportion of individuals who own a mobile telephone by sex (percent)Series Code: IT_MOB_OWNRelease Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 5.b.1: Proportion of individuals who own a mobile telephone, by sexTarget 5.b: Enhance the use of enabling technology, in particular information and communications technology, to promote the empowerment of womenGoal 5: Achieve gender equality and empower all women and girlsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  6. Number of smartphone users in the UK 2020-2029

    • statista.com
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of smartphone users in the UK 2020-2029 [Dataset]. https://www.statista.com/statistics/553464/predicted-number-of-smartphone-users-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The number of smartphone users in the United Kingdom was forecast to continuously increase between 2024 and 2029 by in total *** million users (+**** percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach ***** million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Denmark and Latvia.

  7. Number of smartphone users in France 2014-2029

    • statista.com
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of smartphone users in France 2014-2029 [Dataset]. https://www.statista.com/topics/3341/smartphone-market-in-europe/
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The number of smartphone users in France was forecast to continuously increase between 2024 and 2029 by in total 3.2 million users (+5.96 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 56.89 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Belgium and Luxembourg.

  8. MobMeter: a global human mobility data set based on smartphone trajectories

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Finazzi; Francesco Finazzi (2023). MobMeter: a global human mobility data set based on smartphone trajectories [Dataset]. http://doi.org/10.5281/zenodo.7545686
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesco Finazzi; Francesco Finazzi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set is supplement to this Scientific Reports article.

    The data set provides estimates of country-level daily mobility metrics (uncertainty included) for 17 countries from March 11, 2020 to present. Estimates are based on more than 3.8 million smartphone trajectories.

    • Metrics:
      • Estimated daily average travelled distance by people.
      • Estimated percentage of people who did not move during the 24 hours of the day.
    • Countries: Argentina (ARG), Chile (CHL), Colombia (COL), Costa Rica (CRI), Ecuador (ECU), Greece (GRC), Guatemala (GTM), Italy (ITA), Mexico (MEX), Nicaragua (NIC), Panama (PAN), Peru (PER), Philippines (PHL), Slovenia (SVN), Turkey (TUR), United States (USA) and Venezuela (VEN).
    • Covered period: from March 11, 2020 to present.
    • Temporal resolution: daily.
    • Temporal smoothing:
      • No smoothing.
      • 7-day moving average.
      • 14-day moving average.
      • 21-day moving average.
      • 28-day moving average.
    • Uncertainty: 95% bootstrap confidence interval.

    Data ownership

    Anonymized data on smartphone trajectories are collected, owned and managed by Futura Innovation SRL. Smartphone trajectories are stored and analyzed on servers owned by Futura Innovation SRL and not shared with third parties, including the author of this repository and his organization (University of Bergamo).

    Contribution

    • Ilaria Cremonesi of Futura Innovation SRL is the data owner and data manager.
    • Francesco Finazzi of University of Bergamo developed the statistical methodology for the data analysis and the algorithms implemented on Futura Innovation SRL servers.

    Repository update

    CSV files of this repository are regularly produced by Futura Innovation SRL and published by the repository's author after validation.

  9. Worldwide Mobile App User Behavior Dataset

    • kaggle.com
    • dataverse.harvard.edu
    zip
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patricia Carvalho M (2023). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    zip(6323571 bytes)Available download formats
    Dataset updated
    Dec 6, 2023
    Authors
    Patricia Carvalho M
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    From Harvard Dataverse

    Description: We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

    Author: Lim, Soo Ling, 2014, "Worldwide Mobile App User Behavior Dataset", https://doi.org/10.7910/DVN/27459, Harvard Dataverse, V1

    Author filliation: University College London

  10. 🌍 Global Tech Gadget Consumption Data (2015-2025)

    • kaggle.com
    zip
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🌍 Global Tech Gadget Consumption Data (2015-2025) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-tech-gadget-consumption-data-2015-2025
    Explore at:
    zip(3182 bytes)Available download formats
    Dataset updated
    Mar 20, 2025
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    📊 About the Dataset

    Technology adoption has been evolving rapidly, shaping industries and consumer behaviors worldwide. This dataset provides insights into global gadget consumption trends from 2015 to 2025, covering smartphones, laptops, gaming consoles, smartwatches, and 5G penetration rates.

    🎯 Use Cases

    • 📈 Market research & consumer behavior analysis
    • 🔮 Forecasting future tech adoption trends
    • ♻️ Studying the impact of e-waste generation
    • 🌐 Understanding 5G penetration across different countries

    📑 Column Descriptions

    Column NameDescription
    CountryCountry where data is recorded 🌍
    YearYear of observation 📅
    Smartphone Sales (Million)Number of smartphones sold (in millions) 📱
    Laptop Shipments (Million)Number of laptops shipped (in millions) 💻
    Gaming Console Adoption (%)Percentage of population using gaming consoles 🎮
    Smartwatch Penetration (%)Percentage of population using smartwatches ⌚
    Avg Consumer Spending ($)Average spending on tech gadgets 💵
    E-Waste Generation (KT)E-waste generated in kilotons (KT) ♻️
    5G Penetration (%)Percentage of population with 5G access 📡
  11. An inertial and positioning dataset for the walking activity

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Caramaschi; Carl Magnus Olsson; Elizabeth Orchard; Jackson Molloy; Dario Salvi (2024). An inertial and positioning dataset for the walking activity [Dataset]. http://doi.org/10.5061/dryad.n2z34tn5q
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    Malmö University
    Oxford University Hospitals NHS Trust
    Authors
    Sara Caramaschi; Carl Magnus Olsson; Elizabeth Orchard; Jackson Molloy; Dario Salvi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    We are publishing a walking activity dataset including inertial and positioning information from 19 volunteers, including reference distance measured using a trundle wheel. The dataset includes a total of 96.7 Km walked by the volunteers, split into 203 separate tracks. The trundle wheel is of two types: it is either an analogue trundle wheel, which provides the total amount of meters walked in a single track, or it is a sensorized trundle wheel, which measures every revolution of the wheel, therefore recording a continuous incremental distance.
    Each track has data from the accelerometer and gyroscope embedded in the phones, location information from the Global Navigation Satellite System (GNSS), and the step count obtained by the device. The dataset can be used to implement walking distance estimation algorithms and to explore data quality in the context of walking activity and physical capacity tests, fitness, and pedestrian navigation. Methods The proposed dataset is a collection of walks where participants used their own smartphones to capture inertial and positioning information. The participants involved in the data collection come from two sites. The first site is the Oxford University Hospitals NHS Foundation Trust, United Kingdom, where 10 participants (7 affected by cardiovascular diseases and 3 healthy individuals) performed unsupervised 6MWTs in an outdoor environment of their choice (ethical approval obtained by the UK National Health Service Health Research Authority protocol reference numbers: 17/WM/0355). All participants involved provided informed consent. The second site is at Malm ̈o University, in Sweden, where a group of 9 healthy researchers collected data. This dataset can be used by researchers to develop distance estimation algorithms and how data quality impacts the estimation.

    All walks were performed by holding a smartphone in one hand, with an app collecting inertial data, the GNSS signal, and the step counting. On the other free hand, participants held a trundle wheel to obtain the ground truth distance. Two different trundle wheels were used: an analogue trundle wheel that allowed the registration of a total single value of walked distance, and a sensorized trundle wheel which collected timestamps and distance at every 1-meter revolution, resulting in continuous incremental distance information. The latter configuration is innovative and allows the use of temporal windows of the IMU data as input to machine learning algorithms to estimate walked distance. In the case of data collected by researchers, if the walks were done simultaneously and at a close distance from each other, only one person used the trundle wheel, and the reference distance was associated with all walks that were collected at the same time.The walked paths are of variable length, duration, and shape. Participants were instructed to walk paths of increasing curvature, from straight to rounded. Irregular paths are particularly useful in determining limitations in the accuracy of walked distance algorithms. Two smartphone applications were developed for collecting the information of interest from the participants' devices, both available for Android and iOS operating systems. The first is a web-application that retrieves inertial data (acceleration, rotation rate, orientation) while connecting to the sensorized trundle wheel to record incremental reference distance [1]. The second app is the Timed Walk app [2], which guides the user in performing a walking test by signalling when to start and when to stop the walk while collecting both inertial and positioning data. All participants in the UK used the Timed Walk app.

    The data collected during the walk is from the Inertial Measurement Unit (IMU) of the phone and, when available, the Global Navigation Satellite System (GNSS). In addition, the step count information is retrieved by the sensors embedded in each participant’s smartphone. With the dataset, we provide a descriptive table with the characteristics of each recording, including brand and model of the smartphone, duration, reference total distance, types of signals included and additionally scoring some relevant parameters related to the quality of the various signals. The path curvature is one of the most relevant parameters. Previous literature from our team, in fact, confirmed the negative impact of curved-shaped paths with the use of multiple distance estimation algorithms [3]. We visually inspected the walked paths and clustered them in three groups, a) straight path, i.e. no turns wider than 90 degrees, b) gently curved path, i.e. between one and five turns wider than 90 degrees, and c) curved path, i.e. more than five turns wider than 90 degrees. Other features relevant to the quality of collected signals are the total amount of time above a threshold (0.05s and 6s) where, respectively, inertial and GNSS data were missing due to technical issues or due to the app going in the background thus losing access to the sensors, sampling frequency of different data streams, average walking speed and the smartphone position. The start of each walk is set as 0 ms, thus not reporting time-related information. Walks locations collected in the UK are anonymized using the following approach: the first position is fixed to a central location of the city of Oxford (latitude: 51.7520, longitude: -1.2577) and all other positions are reassigned by applying a translation along the longitudinal and latitudinal axes which maintains the original distance and angle between samples. This way, the exact geographical location is lost, but the path shape and distances between samples are maintained. The difference between consecutive points “as the crow flies” and path curvature was numerically and visually inspected to obtain the same results as the original walks. Computations were made possible by using the Haversine Python library.

    Multiple datasets are available regarding walking activity recognition among other daily living tasks. However, few studies are published with datasets that focus on the distance for both indoor and outdoor environments and that provide relevant ground truth information for it. Yan et al. [4] introduced an inertial walking dataset within indoor scenarios using a smartphone placed in 4 positions (on the leg, in a bag, in the hand, and on the body) by six healthy participants. The reference measurement used in this study is a Visual Odometry System embedded in a smartphone that has to be worn at the chest level, using a strap to hold it. While interesting and detailed, this dataset lacks GNSS data, which is likely to be used in outdoor scenarios, and the reference used for localization also suffers from accuracy issues, especially outdoors. Vezovcnik et al. [5] analysed estimation models for step length and provided an open-source dataset for a total of 22 km of only inertial walking data from 15 healthy adults. While relevant, their dataset focuses on steps rather than total distance and was acquired on a treadmill, which limits the validity in real-world scenarios. Kang et al. [6] proposed a way to estimate travelled distance by using an Android app that uses outdoor walking patterns to match them in indoor contexts for each participant. They collect data outdoors by including both inertial and positioning information and they use average values of speed obtained by the GPS data as reference labels. Afterwards, they use deep learning models to estimate walked distance obtaining high performances. Their results share that 3% to 11% of the data for each participant was discarded due to low quality. Unfortunately, the name of the used app is not reported and the paper does not mention if the dataset can be made available.

    This dataset is heterogeneous under multiple aspects. It includes a majority of healthy participants, therefore, it is not possible to generalize the outcomes from this dataset to all walking styles or physical conditions. The dataset is heterogeneous also from a technical perspective, given the difference in devices, acquired data, and used smartphone apps (i.e. some tests lack IMU or GNSS, sampling frequency in iPhone was particularly low). We suggest selecting the appropriate track based on desired characteristics to obtain reliable and consistent outcomes.

    This dataset allows researchers to develop algorithms to compute walked distance and to explore data quality and reliability in the context of the walking activity. This dataset was initiated to investigate the digitalization of the 6MWT, however, the collected information can also be useful for other physical capacity tests that involve walking (distance- or duration-based), or for other purposes such as fitness, and pedestrian navigation.

    The article related to this dataset will be published in the proceedings of the IEEE MetroXRAINE 2024 conference, held in St. Albans, UK, 21-23 October.

    This research is partially funded by the Swedish Knowledge Foundation and the Internet of Things and People research center through the Synergy project Intelligent and Trustworthy IoT Systems.

  12. Internet Users (Per 100 People)

    • kaggle.com
    zip
    Updated Feb 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AndrewEhsaei (2017). Internet Users (Per 100 People) [Dataset]. https://www.kaggle.com/aehsaei/internet-users-per-100-people
    Explore at:
    zip(43869 bytes)Available download formats
    Dataset updated
    Feb 26, 2017
    Authors
    AndrewEhsaei
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Internet users (per 100 people) Internet users are individuals who have used the Internet (from any location) in the last 12 months. Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.

    SourceInternational Telecommunication Union, World Telecommunication/ICT Development Report and database, and World Bank estimates. License Open Aggregation Method: Weighted average Development Relevance: The digital and information revolution has changed the way the world learns, communicates, does business, and treats illnesses. New information and communications technologies (ICT) offer vast opportunities for progress in all walks of life in all countries - opportunities for economic growth, improved health, better service delivery, learning through distance education, and social and cultural advances. Today's smartphones and tablets have computer power equivalent to that of yesterday's computers and provide a similar range of functions. Device convergence is thus rendering the conventional definition obsolete. Comparable statistics on access, use, quality, and affordability of ICT are needed to formulate growth-enabling policies for the sector and to monitor and evaluate the sector's impact on development. Although basic access data are available for many countries, in most developing countries little is known about who uses ICT; what they are used for (school, work, business, research, government); and how they affect people and businesses. The global Partnership on Measuring ICT for Development is helping to set standards, harmonize information and communications technology statistics, and build statistical capacity in developing countries. However, despite significant improvements in the developing world, the gap between the ICT haves and have-nots remains. General Comments: Please cite the International Telecommunication Union for third-party use of these data. Limitations and Exceptions: Operators have traditionally been the main source of telecommunications data, so information on subscriptions has been widely available for most countries. This gives a general idea of access, but a more precise measure is the penetration rate - the share of households with access to telecommunications. During the past few years more information on information and communication technology use has become available from household and business surveys. Also important are data on actual use of telecommunications services. Ideally, statistics on telecommunications (and other information and communications technologies) should be compiled for all three measures: subscriptions, access, and use. The quality of data varies among reporting countries as a result of differences in regulations covering data provision and availability. Discrepancies may also arise in cases where the end of a fiscal year differs from that used by ITU, which is the end of December of every year. A number of countries have fiscal years that end in March or June of every year. Periodicity: Annual Statistical Concept and Methodology: The Internet is a world-wide public computer network. It provides access to a number of communication services including the World Wide Web and carries email, news, entertainment and data files, irrespective of the device used (not assumed to be only via a computer - it may also be by mobile phone, PDA, games machine, digital TV etc.). Access can be via a fixed or mobile network.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  13. User mobile app interaction data

    • kaggle.com
    zip
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Moslemani (2025). User mobile app interaction data [Dataset]. https://www.kaggle.com/datasets/mohamedmoslemani/user-mobile-app-interaction-data/data
    Explore at:
    zip(6809111 bytes)Available download formats
    Dataset updated
    Jan 15, 2025
    Authors
    Mohamed Moslemani
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset has been artificially generated to mimic real-world user interactions within a mobile application. It contains 100,000 rows of data, each row of which represents a single event or action performed by a synthetic user. The dataset was designed to capture many of the attributes commonly tracked by app analytics platforms, such as device details, network information, user demographics, session data, and event-level interactions.

    Key Features Included

    User & Session Metadata

    User ID: A unique integer identifier for each synthetic user. Session ID: Randomly generated session identifiers (e.g., S-123456), capturing the concept of user sessions. IP Address: Fake IP addresses generated via Faker to simulate different network origins. Timestamp: Randomized timestamps (within the last 30 days) indicating when each interaction occurred. Session Duration: An approximate measure (in seconds) of how long a user remained active. Device & Technical Details

    Device OS & OS Version: Simulated operating systems (Android/iOS) with plausible version numbers. Device Model: Common phone models (e.g., “Samsung Galaxy S22,” “iPhone 14 Pro,” etc.). Screen Resolution: Typical screen resolutions found in smartphones (e.g., “1080x1920”). Network Type: Indicates whether the user was on Wi-Fi, 5G, 4G, or 3G. Location & Locale

    Location Country & City: Random global locations generated using Faker. App Language: Represents the user’s app language setting (e.g., “en,” “es,” “fr,” etc.). User Properties

    Battery Level: The phone’s battery level as a percentage (0–100). Memory Usage (MB): Approximate memory consumption at the time of the event. Subscription Status: Boolean flag indicating if the user is subscribed to a premium service. User Age: Random integer ranging from teenagers to seniors (13–80). Phone Number: Fake phone numbers generated via Faker. Push Enabled: Boolean flag indicating if the user has push notifications turned on. Event-Level Interactions

    Event Type: The action taken by the user (e.g., “click,” “view,” “scroll,” “like,” “share,” etc.). Event Target: The UI element or screen component interacted with (e.g., “home_page_banner,” “search_bar,” “notification_popup”). Event Value: A numeric field indicating additional context for the event (e.g., intensity, count, rating). App Version: Simulated version identifier for the mobile application (e.g., “4.2.8”). Data Quality & “Noise” To better approximate real-world data, 1% of all fields have been intentionally “corrupted” or altered:

    Typos and Misspellings: Random single-character edits, e.g., “Andro1d” instead of “Android.” Missing Values: Some cells might be blank (None) to reflect dropped or unrecorded data. Random String Injections: Occasional random alphanumeric strings inserted where they don’t belong. These intentional discrepancies can help data scientists practice data cleaning, outlier detection, and data wrangling techniques.

    Usage & Applications

    Data Cleaning & Preprocessing: Ideal for practicing how to handle missing values, inconsistent data, and noise in a realistic scenario. Analytics & Visualization: Demonstrate user interaction funnels, session durations, usage by device/OS, etc. Machine Learning & Modeling: Suitable for building classification or clustering models (e.g., user segmentation, event classification). Simulation for Feature Engineering: Experiment with deriving new features (e.g., session frequency, average battery drain, etc.).

    Important Notes & Disclaimer

    Synthetic Data: All entries (users, device info, IPs, phone numbers, etc.) are artificially generated and do not correspond to real individuals. Privacy & Compliance: Since no real personal data is present, there are no direct privacy concerns. However, always handle synthetic data ethically.

  14. Flipkart Mobile Dataset

    • kaggle.com
    zip
    Updated Nov 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubham Bathwal (2021). Flipkart Mobile Dataset [Dataset]. https://www.kaggle.com/shubhambathwal/flipkart-mobile-dataset
    Explore at:
    zip(1290055 bytes)Available download formats
    Dataset updated
    Nov 26, 2021
    Authors
    Shubham Bathwal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Flipkart:

    Flipkart is an Indian e-commerce company, headquartered in Bangalore, Karnataka, India. It is the largest e-commerce company in India and was founded by Sachin and Binny Bansal. The company has wide variety of products electronics like laptops, tablets, smartphones, and mobile accessories to in-vogue fashion staples like shoes, clothing and lifestyle accessories; from modern furniture like sofa sets, dining tables, and wardrobes to appliances that make your life easy like washing machines, TVs, ACs, mixer grinder juicers and other time-saving kitchen and small appliances; from home furnishings like cushion covers, mattresses and bedsheets to toys and musical instruments.

    Mobile Phones

    Mobile phones are one of the most rapidly rising industries, as well as one of the most prominent industries in the technology sector. The rate of increase has been exponential, with the number of mobile phone customers increasing fivefold in the last decade. Globally, the number of smartphones sold to end users climbed from 300 million in 2010 to 1.5 billion by 2020.

    Flipkart and Mobile Phones

    As previously stated, mobile phones are in high demand and are one of the ideal products for a novice to sell. Flipkart will be the ideal spot for a vendor to market their stuff because its reach.

    Content

    The dataset contains description of top 5 most popular mobile brand in India. Columns : There are 16 columns each having a title which is self explanatory. Rows : There are 430 rows each having a mobile with at least a distinct feature.

    Acknowledgements

    The data was retrieved directly from Flipkart website using some web crawling techniques

    Assumption

    We don’t have direct sales report of how many units of a mobile model was sold. In general, number of people rating a product is directly proportional to number of units sold. So, for the purpose of the solution, we are using number of people rating the product as the equivalent units sold.

    Inspiration

    The objective is to address a hypothetical business problem for a Flipkart Authorized Seller. According to the hypothesis the individual is looking to sell mobile phones on Flipkart. For this, the individual is looking for the best product, brand, specification and deals that can generate the most revenue with the least amount of investment and budget constraints.

    Questions to be answered: 1. Whether he should sell product for a particular brand only or try to focus on model from different brands? 2. Using EDA and Data Visualization find out insights and relation between different features 3. Perform detailed analysis of each brand. 4. Assuming a budget for the problem come to a solution with maximum return.

  15. b

    Apple Statistics (2025)

    • businessofapps.com
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). Apple Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-statistics/
    Explore at:
    Dataset updated
    Jul 20, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...

  16. G

    Germany DE: Internet Users: Individuals: % of Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Germany DE: Internet Users: Individuals: % of Population [Dataset]. https://www.ceicdata.com/en/germany/telecommunication/de-internet-users-individuals--of-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Germany
    Variables measured
    Phone Statistics
    Description

    Germany DE: Internet Users: Individuals: % of Population data was reported at 93.500 % in 2024. This records an increase from the previous number of 92.500 % for 2023. Germany DE: Internet Users: Individuals: % of Population data is updated yearly, averaging 75.200 % from Dec 1990 (Median) to 2024, with 35 observations. The data reached an all-time high of 93.500 % in 2024 and a record low of 0.126 % in 1990. Germany DE: Internet Users: Individuals: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Telecommunication. Internet users are individuals who have used the Internet (from any location) in the last 3 months. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.;International Telecommunication Union (ITU) World Telecommunication/ICT Indicators Database;Weighted average;Please cite the International Telecommunication Union for third-party use of these data.

  17. P

    Pakistan PK: Internet Users: Individuals: % of Population

    • ceicdata.com
    Updated Jul 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Pakistan PK: Internet Users: Individuals: % of Population [Dataset]. https://www.ceicdata.com/en/pakistan/telecommunication/pk-internet-users-individuals--of-population
    Explore at:
    Dataset updated
    Jul 8, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Pakistan
    Variables measured
    Phone Statistics
    Description

    Pakistan PK: Internet Users: Individuals: % of Population data was reported at 15.515 % in 2016. This records an increase from the previous number of 14.000 % for 2015. Pakistan PK: Internet Users: Individuals: % of Population data is updated yearly, averaging 6.416 % from Dec 1990 (Median) to 2016, with 22 observations. The data reached an all-time high of 15.515 % in 2016 and a record low of 0.000 % in 1990. Pakistan PK: Internet Users: Individuals: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank: Telecommunication. Internet users are individuals who have used the Internet (from any location) in the last 3 months. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.; ; International Telecommunication Union, World Telecommunication/ICT Development Report and database.; Weighted average; Please cite the International Telecommunication Union for third-party use of these data.

  18. Number of smartphone users in Ireland 2020-2029

    • statista.com
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of smartphone users in Ireland 2020-2029 [Dataset]. https://www.statista.com/statistics/494649/smartphone-users-in-ireland/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Ireland
    Description

    The number of smartphone users in Ireland was forecast to continuously increase between 2024 and 2029 by in total 0.3 million users (+6.15 percent). After the seventh consecutive increasing year, the smartphone user base is estimated to reach 5.22 million users and therefore a new peak in 2029. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Serbia and Sweden.

  19. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  20. P

    Philippines PH: Internet Users: Individuals: % of Population

    • ceicdata.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Philippines PH: Internet Users: Individuals: % of Population [Dataset]. https://www.ceicdata.com/en/philippines/telecommunication/ph-internet-users-individuals--of-population
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Philippines
    Variables measured
    Phone Statistics
    Description

    Philippines PH: Internet Users: Individuals: % of Population data was reported at 55.500 % in 2016. This records an increase from the previous number of 53.700 % for 2015. Philippines PH: Internet Users: Individuals: % of Population data is updated yearly, averaging 5.321 % from Dec 1990 (Median) to 2016, with 24 observations. The data reached an all-time high of 55.500 % in 2016 and a record low of 0.000 % in 1990. Philippines PH: Internet Users: Individuals: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Philippines – Table PH.World Bank: Telecommunication. Internet users are individuals who have used the Internet (from any location) in the last 3 months. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.; ; International Telecommunication Union, World Telecommunication/ICT Development Report and database.; Weighted average; Please cite the International Telecommunication Union for third-party use of these data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of smartphone users worldwide 2014-2029 [Dataset]. https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
Organization logo

Number of smartphone users worldwide 2014-2029

Explore at:
149 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 9, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total *** billion users (+***** percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.

Search
Clear search
Close search
Google apps
Main menu