100+ datasets found
  1. Stock Market Dataset

    • kaggle.com
    zip
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jasineri (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/jasineri/stock-market-dataset
    Explore at:
    zip(33123120 bytes)Available download formats
    Dataset updated
    Nov 14, 2025
    Authors
    jasineri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Disclaimer: Educational Purposes Only

    The financial and International Securities Identification Number (ISIN) data listed on this platform is provided solely for educational purposes. The information is intended to serve as general guidance and does not constitute financial advice, an endorsement, or a recommendation for the purchase or sale of any securities.

    While we strive to ensure the accuracy and timeliness of the information presented, we make no representations or warranties, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the provided data. Users are encouraged to independently verify any information obtained from this platform before making any investment decisions.

    This platform and its operators are not responsible for any errors, omissions, or inaccuracies in the provided data, nor for any actions taken in reliance on such information. Users are strongly advised to conduct thorough research and seek the advice of qualified financial professionals before making any investment decisions.

    The use of International Securities Identification Numbers (ISINs) and other financial data is subject to various regulations and licensing agreements. Users are responsible for complying with all applicable laws and respecting any terms and conditions associated with the use of such data.

    By accessing and using this platform, users acknowledge and agree that they are doing so at their own risk and discretion. This educational content is not a substitute for professional financial advice, and users should consult with qualified professionals for specific guidance tailored to their individual circumstances.

  2. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
    Explore at:
    zip(486977 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  3. Amazon Daily Stock Prices Dataset

    • kaggle.com
    zip
    Updated Sep 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Atif Latif (2025). Amazon Daily Stock Prices Dataset [Dataset]. https://www.kaggle.com/datasets/muhammadatiflatif/amzn-daily-stock-prices-dataset
    Explore at:
    zip(506428 bytes)Available download formats
    Dataset updated
    Sep 14, 2025
    Authors
    Muhammad Atif Latif
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon (AMZN) Stock Price Time-Series Dataset: May 2012 - November 2012

    Dataset Overview

    This dataset provides a detailed, intraday view of Amazon's stock (AMZN) price movements from May 21, 2012, to November 14, 2012. Meticulously compiled, it offers a granular perspective on market dynamics, enabling robust quantitative analysis and modeling.

    Content

    The dataset encompasses the following key financial metrics for each trading day:

    • Date: The specific date of the trading session.
    • Open: The initial price at the commencement of trading.
    • High: The maximum price attained during the trading day.
    • Low: The minimum price recorded during the trading day.
    • Close: The final trading price at the market's close.
    • Adj Close: The closing price adjusted for corporate actions like dividends and stock splits, providing a true return on investment.
    • Volume: The number of shares exchanged throughout the trading day, indicating market activity and liquidity.

    Intended Use Cases

    This dataset is tailored for sophisticated financial analysis, model development, and academic research. Potential applications include:

    • Algorithmic Trading Strategy Development: Design and back-test trading algorithms using historical price movements and volume data.
    • Volatility Modeling: Analyze and forecast stock price volatility using time-series analysis techniques (e.g., GARCH models).
    • Financial Forecasting: Implement machine learning models to predict future stock prices based on historical patterns.
    • Event Study Analysis: Examine the impact of specific events or news announcements on Amazon's stock price.
    • Risk Management: Evaluate potential risks associated with investing in Amazon stock during this period.
    • Academic Research: Conduct studies on market efficiency, price discovery, and the impact of market microstructure on stock behavior.

    Data Considerations

    • Time Zone: Data is timestamped with Eastern Time (ET).
    • Data Cleaning: The dataset has been verified for accuracy, but users are encouraged to perform their own data quality checks.

    Contect info:

    You can contect me for more data sets if you want any type of data to scrape

    -E_mail

    -Linkdin

    -Kaggle

    -X

    -Github

  4. S&P 500 stock data

    • kaggle.com
    zip
    Updated Feb 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cam Nugent (2018). S&P 500 stock data [Dataset]. https://www.kaggle.com/camnugent/sandp500
    Explore at:
    zip(20283917 bytes)Available download formats
    Dataset updated
    Feb 10, 2018
    Authors
    Cam Nugent
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.

    The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.

    Feb 2018 note: I have just updated the dataset to include data up to Feb 2018. I have also accounted for changes in the stocks on the S&P 500 index (RIP whole foods etc. etc.).

    Content

    The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the all_stocks_5yr.csv and corresponding folder).

    The folder individual_stocks_5yr contains files of data for individual stocks, labelled by their stock ticker name. The all_stocks_5yr.csv contains the same data, presented in a merged .csv file. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.

    All the files have the following columns: Date - in format: yy-mm-dd

    Open - price of the stock at market open (this is NYSE data so all in USD)

    High - Highest price reached in the day

    Low Close - Lowest price reached in the day

    Volume - Number of shares traded

    Name - the stock's ticker name

    Acknowledgements

    Due to volatility in google finance, for the newest version I have switched over to acquiring the data from The Investor's Exchange api, the simple script I use to do this is found here. Special thanks to Kaggle, Github, pandas_datareader and The Market.

    Inspiration

    This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!

  5. 📊 Financial market screener

    • kaggle.com
    zip
    Updated Dec 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pierre-Louis DANIEAU (2021). 📊 Financial market screener [Dataset]. https://www.kaggle.com/datasets/pierrelouisdanieau/financial-market-screener
    Explore at:
    zip(56804 bytes)Available download formats
    Dataset updated
    Dec 28, 2021
    Authors
    Pierre-Louis DANIEAU
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you will find several characteristics on global companies listed on the stock exchange. These characteristics are analyzed by millions of investors before they invest their money.

    Analyze the stock market performance of thousands of companies ! This is the objective of this dataset !

    Content

    Among thse charateristics you will find :

    • The symbol : The stock symbol is a unique series of letters assigned to a security for trading purposes.
    • The shortname : The name of the company
    • The sector : The sector of the company (Technology, Financial services, consumer cyclical...)
    • The country : The location of the head office.
    • The market capitalisation : Market capitalization refers to the total dollar market value of a company's outstanding shares of stock. It is calculated by multiplying the total number of a company's outstanding shares by the current market price of one share.
    • The current ratio : The current ratio is a liquidity ratio that measures a company’s ability to pay short-term obligations. A current ratio that is in line with the industry average or slightly higher is generally considered acceptable. A current ratio that is lower than the industry average may indicate a higher risk of distress or default.
    • The beta : Beta is a measure of a stock's volatility in relation to the overall market. A beta greater than 1.0 suggests that the stock is more volatile than the broader market, and a beta less than 1.0 indicates a stock with lower volatility.
    • The dividend rate : Represents the ratio of a company's annual dividend compared to its share price. (%)

    All this data is public data, obtained from the annual financial reports of these companies. They have been retrieved from the Yahoo Finance API and have been checked beforehand.

    Inspiration

    This dataset has been designed so that it is possible to build a recommendation engine. For example, from an existing position in a portfolio, recommend an alternative with similar characteristics (sector, market capitalization, current ratio,...) but more in line with an investor's expectations (may be with less risk or with more dividends etc...)

    If you have question about this dataset you can contact me

  6. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

  7. daily stock historical data US Market 20+ years

    • kaggle.com
    zip
    Updated May 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantinos Batsos (2023). daily stock historical data US Market 20+ years [Dataset]. https://www.kaggle.com/datasets/konstantinosbatsos/daily-stock-historical-data-us-market-20-years
    Explore at:
    zip(901406144 bytes)Available download formats
    Dataset updated
    May 12, 2023
    Authors
    Konstantinos Batsos
    Description

    Dataset Description:

    Welcome to one of the most comprehensive financial datasets on Kaggle! This dataset encapsulates a quarter-century of daily U.S. stock market data, encompassing over 11,000 distinct tickers. It offers a broad spectrum of historical insights into the heart of the U.S. financial market, from blue-chip stocks to small-cap gems.

    The data spans from the early dawn of the digital age to the present day, presenting a unique opportunity to analyze trends, patterns, and market behavior over significant economic cycles, events, and technological advancements.

    Key Features of the Dataset:

    • Extensive Coverage: The dataset includes data for over 11,000 tickers, making it an excellent resource for both breadth and depth analyses. Whether you're interested in a particular sector, market capitalization, or individual stocks, this dataset has you covered.

    • Detailed Information: For each ticker, the dataset provides daily Open, Close, Volume, and Dividend data. This granularity allows for intricate technical analyses, machine learning modeling, backtesting trading strategies, or even building your own stock market simulator.

    • Historical Dividend Data: The inclusion of dividend data makes this dataset particularly valuable for those interested in studying income-generating stocks or assessing the impact of dividend announcements on stock prices.

    • Reliability and Consistency: The dataset has been meticulously compiled and validated, ensuring the accuracy and consistency of the data. It's been exported from an MS SQL Server database, thus maintaining the integrity and structure of the original data.

    Potential Applications:

    This dataset is a gold mine for researchers, data scientists, quantitative analysts, financial professionals, or anyone with an interest in financial markets. You can use it for a wide variety of purposes, such as:

    • Developing and backtesting trading algorithms
    • Conducting financial research and market analysis
    • Teaching and learning about financial markets and data analysis
    • Building predictive models for stock prices or market movements
    • Investigating the impact of dividends on stock performance
    • And much more!

    In essence, this dataset offers a unique opportunity to dive into the fascinating world of the U.S. stock market. With its vast coverage, detailed information, and historical depth, it's a treasure trove of data waiting to be explored. Dive in and start discovering new insights today!

  8. Financial wealth: wealth in Great Britain

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Financial wealth: wealth in Great Britain [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/datasets/financialwealthwealthingreatbritain
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    The values of any financial assets held including both formal investments, such as bank or building society current or saving accounts, investment vehicles such as Individual Savings Accounts, endowments, stocks and shares, and informal savings.

  9. Can we predict stock market using machine learning? (FZO Stock Forecast)...

    • kappasignal.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (FZO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_20.html
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (FZO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. IMNN Stock Forecast (Forecast)

    • kappasignal.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). IMNN Stock Forecast (Forecast) [Dataset]. https://www.kappasignal.com/2025/05/imnn-stock-forecast.html
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    IMNN Stock Forecast

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. Stocks Data- Individual stock 5 years

    • kaggle.com
    zip
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    singole (2022). Stocks Data- Individual stock 5 years [Dataset]. https://www.kaggle.com/datasets/singole/stocks-data-individual-stock-5-years
    Explore at:
    zip(10270219 bytes)Available download formats
    Dataset updated
    Sep 7, 2022
    Authors
    singole
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset Context Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.

    The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.

    Feb 2018 note: I have just updated the dataset to include data up to Feb 2018. I have also accounted for changes in the stocks on the S&P 500 index (RIP whole foods etc. etc.).

    Content The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the allstocks5yr.csv and corresponding folder).

    The folder individualstocks5yr contains files of data for individual stocks, labelled by their stock ticker name. The allstocks5yr.csv contains the same data, presented in a merged .csv file. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.

    All the files have the following columns: Date - in format: yy-mm-dd

    Open - price of the stock at market open (this is NYSE data so all in USD)

    High - Highest price reached in the day

    Low Close - Lowest price reached in the day

    Volume - Number of shares traded

    Name - the stock's ticker name

    Acknowledgements Due to volatility in google finance, for the newest version I have switched over to acquiring the data from The Investor's Exchange api, the simple script I use to do this is found here. Special thanks to Kaggle, Github, pandas_datareader and The Market.

    Inspiration This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!

  12. DTE Energy (DTE) Stock Forecast: Powering Profits in 2024? (Forecast)

    • kappasignal.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DTE Energy (DTE) Stock Forecast: Powering Profits in 2024? (Forecast) [Dataset]. https://www.kappasignal.com/2024/06/dte-energy-dte-stock-forecast-powering.html
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DTE Energy (DTE) Stock Forecast: Powering Profits in 2024?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. What are the most successful trading algorithms? (NTAP Stock Forecast)...

    • kappasignal.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (NTAP Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/what-are-most-successful-trading.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (NTAP Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. LON:INS Stock: The Stock Market Bubble Is About to Burst (Forecast)

    • kappasignal.com
    Updated Jul 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). LON:INS Stock: The Stock Market Bubble Is About to Burst (Forecast) [Dataset]. https://www.kappasignal.com/2023/07/lonins-stock-stock-market-bubble-is.html
    Explore at:
    Dataset updated
    Jul 15, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:INS Stock: The Stock Market Bubble Is About to Burst

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. EOD Stock: A Strong Financial Position and Bright Future (Forecast)

    • kappasignal.com
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). EOD Stock: A Strong Financial Position and Bright Future (Forecast) [Dataset]. https://www.kappasignal.com/2023/11/eod-stock-strong-financial-position-and.html
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    EOD Stock: A Strong Financial Position and Bright Future

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. m

    VIA Technologies Inc - Common-Stock-Shares-Outstanding

    • macro-rankings.com
    csv, excel
    Updated Oct 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). VIA Technologies Inc - Common-Stock-Shares-Outstanding [Dataset]. https://www.macro-rankings.com/markets/stocks/2388-tw/balance-sheet/common-stock-shares-outstanding
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Oct 30, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    taiwan
    Description

    Common-Stock-Shares-Outstanding Time Series for VIA Technologies Inc. VIA Technologies, Inc. engages in the programming, design, manufacture, and sale of semiconductors and PC chip sets in Taiwan, Hong Kong, and China. It offers automotive solutions, including a range of VIA Mobile360 systems and devices that use a suite of AI-powered people detection, driver safety system, and sensor fusion technologies; building solutions that consists of access control systems, video intercom systems, home automation tablets, smart doorbell, touchpad alarm systems, and video alarm systems; and industrial solutions, including plastic bag stitching inspection, wafer inspection, smoke detection, worker PPE inspection, worker PPE class 2/4 inspection, and pipeline weld inspection. The company also provides edge modules, such as VIA SOM-7000, VIA SOM-5000, and VIA SOM-3000; edge boards, such as VIA VAB-5000, VIA VAB-3000, and VIA EPIA-M930; and VIA AI Transforma Model 1 platform; and edge systems comprising the VIA ARTiGO series systems and VIA AMOS. In addition, it is involved in the manufacture and sale of communication and electronic parts; design and manufacture of CPU and licensing of microprocessor-related intellectual property; manufacture, research, development, and sale of integrated circuit chips; and sale of graphic chipsets. Further, the company offers integrated circuit chip testing and packaging; information software processing; CPU contract technical services; and sales marketing support services. VIA Technologies, Inc. was founded in 1987 and is headquartered in New Taipei City, Taiwan.

  17. Dhaka Stock Exchange Price Dataset 2000 - 2025

    • kaggle.com
    zip
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahjada Alif (2025). Dhaka Stock Exchange Price Dataset 2000 - 2025 [Dataset]. https://www.kaggle.com/datasets/muhammedalif/dsc-prices
    Explore at:
    zip(27820105 bytes)Available download formats
    Dataset updated
    Feb 26, 2025
    Authors
    Shahjada Alif
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Dhaka
    Description

    Dhaka Stock Exchange (DSE) Historical Stock Prices (2000-2025)

    Dataset Overview:

    This dataset provides a comprehensive historical record of stock prices from the Dhaka Stock Exchange (DSE), the primary stock exchange of Bangladesh. Spanning from January 1, 2000, to February 26, 2025, it offers a detailed look into the daily trading activity of 464 unique stocks.

    Key Features:

    • Date: The trading date (YYYY-MM-DD format).
    • Script (Stock Name): The name or ticker symbol of the listed company.
    • Open: The opening price of the stock on the given trading day.
    • High: The highest price reached by the stock during the trading day.
    • Low: The lowest price reached by the stock during the trading day.
    • Close: The closing price of the stock on the given trading day.
    • Volume: The total number of shares traded for the stock on the given trading day.

    Data Characteristics:

    • Time Span: January 1, 2000, to February 26, 2025.
    • Number of Unique Stocks: 464
    • Frequency: Daily
    • Accuracy: Clean and accurate data, suitable for reliable analysis.

    Potential Uses:

    • Financial Analysis: Analyze stock trends, volatility, and performance over time.
    • Machine Learning: Develop predictive models for stock price forecasting.
    • Economic Research: Study the impact of economic events on the Bangladeshi stock market.
    • Investment Strategies: Backtest trading strategies and identify potential investment opportunities.
    • Educational Purposes: Learn about stock market dynamics and data analysis in finance.

    Acknowledgements:

    This dataset was meticulously compiled and cleaned to provide a valuable resource for researchers, analysts, and investors interested in the Dhaka Stock Exchange.

    Note:

    While efforts have been made to ensure the accuracy of the data, users are advised to conduct their own due diligence and validation before making any investment decisions based on this dataset.

    This description highlights the key aspects of your dataset, its potential uses, and its reliability. Feel free to adjust it further based on any specific details or insights you want to emphasize!

  18. WFC^A Wells Fargo & Company Depositary Shares each representing a 1/1000th...

    • kappasignal.com
    Updated Feb 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). WFC^A Wells Fargo & Company Depositary Shares each representing a 1/1000th interest in a share of Non-Cumulative Perpetual Class A Preferred Stock Series AA (Forecast) [Dataset]. https://www.kappasignal.com/2023/02/wfca-wells-fargo-company-depositary.html
    Explore at:
    Dataset updated
    Feb 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    WFC^A Wells Fargo & Company Depositary Shares each representing a 1/1000th interest in a share of Non-Cumulative Perpetual Class A Preferred Stock Series AA

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. Reddit: /r/stocks

    • kaggle.com
    zip
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Reddit: /r/stocks [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlocking-stock-market-insights-with-reddit-user
    Explore at:
    zip(622416 bytes)Available download formats
    Dataset updated
    Dec 19, 2022
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Reddit: /r/stocks

    Analyzing User Engagement to Identify Market Trends

    By Reddit [source]

    About this dataset

    This dataset provides a valuable opportunity for researchers to explore the fascinating world of stock exchange markets through the eyes of those participating in discussions on Reddit. We have compiled posts from the subredditstocks subreddit to provide researchers with an invaluable source of information on how stock market trends may be impacted by user sentiment. With detailed data columns such as post titles, scores, id's, URLs, comments counts and created times for each post we are offering a unique vantage point into understanding how stocks market discussions may inform our better understanding of these dynamics. By delving further into user sentiment and engagement with stock topics, investigators can put together meaningful pieces in assembling full-fledged investments picture that is based off sound evidence gained from real people’s experiences and opinion. Discovering new insights has never been made easier – let’s venture out on this journey together!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨! ### Research Ideas
    • Using the score and comments data, researchers can determine which stocks are being discussed and tracked the most, indicating potential areas of interest in the stock market.
    • Analyzing the body text of posts to identify common topics of conversation related to various stocks assists in providing a better understanding of users' feelings towards different stock investments.
    • Through analyzing fluctuations in user engagement over time, researchers can observe which stocks have experienced an increase or decrease in user interest and reaction to new developments within different markets

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: stocks.csv | Column name | Description | |:--------------|:--------------------------------------------------------------------| | title | The title of the post. (String) | | score | The score of the post, based on the Reddit voting system. (Integer) | | url | The URL of the post. (String) | | comms_num | The number of comments on the post. (Integer) | | created | The date and time the post was created. (Timestamp) | | body | The body text of the post. (String) | | timestamp | The date and time the post was last updated. (Timestamp) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Reddit.

  20. Nektar (NKTR) Shares May See Upswing on Promising Drug Data (Forecast)

    • kappasignal.com
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Nektar (NKTR) Shares May See Upswing on Promising Drug Data (Forecast) [Dataset]. https://www.kappasignal.com/2025/06/nektar-nktr-shares-may-see-upswing-on.html
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nektar (NKTR) Shares May See Upswing on Promising Drug Data

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
jasineri (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/jasineri/stock-market-dataset
Organization logo

Stock Market Dataset

Explore at:
zip(33123120 bytes)Available download formats
Dataset updated
Nov 14, 2025
Authors
jasineri
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Disclaimer: Educational Purposes Only

The financial and International Securities Identification Number (ISIN) data listed on this platform is provided solely for educational purposes. The information is intended to serve as general guidance and does not constitute financial advice, an endorsement, or a recommendation for the purchase or sale of any securities.

While we strive to ensure the accuracy and timeliness of the information presented, we make no representations or warranties, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the provided data. Users are encouraged to independently verify any information obtained from this platform before making any investment decisions.

This platform and its operators are not responsible for any errors, omissions, or inaccuracies in the provided data, nor for any actions taken in reliance on such information. Users are strongly advised to conduct thorough research and seek the advice of qualified financial professionals before making any investment decisions.

The use of International Securities Identification Numbers (ISINs) and other financial data is subject to various regulations and licensing agreements. Users are responsible for complying with all applicable laws and respecting any terms and conditions associated with the use of such data.

By accessing and using this platform, users acknowledge and agree that they are doing so at their own risk and discretion. This educational content is not a substitute for professional financial advice, and users should consult with qualified professionals for specific guidance tailored to their individual circumstances.

Search
Clear search
Close search
Google apps
Main menu