Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 4 rows and is filtered where the books is Building a TypePad blog people want to read. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
(TR) Bu veri seti, Medium Türkiye'de yazılmış olan 203 adet makale/blog yazısını içermektedir
(ENG) This dataset contains 203 articles/blog posts written on "Medium Turkey"
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset comprises a set of Twitter accounts in Singapore that are used for social bot profiling research conducted by the Living Analytics Research Centre (LARC) at Singapore Management University (SMU). Here a bot is defined as a Twitter account that generates contents and/or interacts with other users automatically (at least according to human judgment). In this research, Twitter bots have been categorized into three major types:
Broadcast bot. This bot aims at disseminating information to general audience by providing, e.g., benign links to news, blogs or sites. Such bot is often managed by an organization or a group of people (e.g., bloggers). Consumption bot. The main purpose of this bot is to aggregate contents from various sources and/or provide update services (e.g., horoscope reading, weather update) for personal consumption or use. Spam bot. This type of bots posts malicious contents (e.g., to trick people by hijacking certain account or redirecting them to malicious sites), or promotes harmless but invalid/irrelevant contents aggressively.
This categorization is general enough to cater for new, emerging types of bot (e.g., chatbots can be viewed as a special type of broadcast bots). The dataset was collected from 1 January to 30 April 2014 via the Twitter REST and streaming APIs. Starting from popular seed users (i.e., users having many followers), their follow, retweet, and user mention links were crawled. The data collection proceeds by adding those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. Using this procedure, a total of 159,724 accounts have been collected. To identify bots, the first step is to check active accounts who tweeted at least 15 times within the month of April 2014. These accounts were then manually checked and labelled, of which 589 bots were found. As many more human users are expected in the Twitter population, the remaining accounts were randomly sampled and manually checked. With this, 1,024 human accounts were identified. In total, this results in 1,613 labelled accounts. Related Publication: R. J. Oentaryo, A. Murdopo, P. K. Prasetyo, and E.-P. Lim. (2016). On profiling bots in social media. Proceedings of the International Conference on Social Informatics (SocInfo’16), 92-109. Bellevue, WA. https://doi.org/10.1007/978-3-319-47880-7_6
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.
https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for "heliosbrahma/mental_health_chatbot_dataset"
Dataset Description
Dataset Summary
This dataset contains conversational pair of questions and answers in a single text related to Mental Health. Dataset was curated from popular healthcare blogs like WebMD, Mayo Clinic and HeatlhLine, online FAQs etc. All questions and answers have been anonymized to remove any PII data and pre-processed to remove any unwanted characters.
Languages
The… See the full description on the dataset page: https://huggingface.co/datasets/heliosbrahma/mental_health_chatbot_dataset.
Tutkimuksessa kartoitettiin suomenruotsalaisten identiteettiä ja mielipiteitä mm. arkipäivän sujumisesta, joukkoviestimien käytöstä, politiikasta ja yhteiskunnasta, arvoista, identiteetistä sekä yhteenkuuluvuudesta. Tutkimusta on rahoittanut Svenska Kulturfonden. Aluksi kysyttiin mihin kieliryhmään vastaaja ja hänen lähipiirinsä tunsivat kuuluvansa ja kuinka hyvin vastaajat katsoivat osaavansa suomea. Seuraavaksi kartoitettiin ruotsin tai suomen kielen käyttämistä eri yhteyksissä. Seuraavat kysymykset käsittelivät joukkotiedotusvälineitä. Vastaajilta kysyttiin, kuinka usein he seuraavat päivä- tai iltapäivälehtiä, kuuntelevat radiota tai katselevat televisiota. Kysyttiin myös, onko taloudessa digiboksi ja kuinka usein sähköpostia ja Internetiä kaytetään. Manner-suomalaisilta vastaajilta kysyttiin seuraavaksi kunnallisvaaleista, jotka pidettiin 26.10.2008. Kysyttiin, kuinka kiinnostuneita vastaajat olivat kunnallispolitiikasta, heille esitettiin kunnallisvaaleja koskevia väittämiä ja kysyttiin, olivatko vastaajat jollain tavalla osallisina kunnallisvaaleissa tai vaalityössä. Kysyttiin myös, mitä puoluetta aiottiin äänestää, äänestetäänkö samaa puoluetta kuin edellisissä kunnallisvaaleissa ja tiedusteltiin, mitä asioita kunnallispoliitikkojen tulisi painottaa eniten. Lisäksi esitettiin kuntia, kuntien yhdistämistä, kunnallispolitiikkaa ja kuntien palveluja käsitteleviä kysymyksiä, sekä joitakin vastaajan asuinseutua koskevia kysymyksiä. Seuraavat kysymykset oli asettanut Förvaltningslösningar språkliga konsekvenser (SpråKon) -projekti. Kysymyksillä arvioitiin käsityksiä asuinkunnan olosuhteista, mm. vanhusten- ja sairaanhoidosta, kouluista ja koulutuksesta, työllisyystilanteesta, joukkoliikenteestä, kulttuuri- ja urheilutarjonnasta, asukkaiden vaikutusmahdollisuuksista, tasa-arvon toteutumisesta, turvallisuudesta sekä kunnan yrittäjille tarjoamista mahdollisuuksista. Taustamuuttujina olivat asuinalue, ikäluokka, koulutus, työllisyystilanne, siviilisääty ja talouden koko. This study charted the identity of Swedish-speaking Finns and their opinions on various aspects of everyday life, such as politics and society, the use of mass media, leisure time activities, values, and the sense of belonging. The study was funded by the Swedish Cultural Foundation in Finland (Svenska kulturfonden). The first questions revolved around language. The respondents' and their families' Finnish and Swedish language skills were surveyed. It was examined whether the respondents had used Swedish, Finnish or both in different types of contexts, e.g. at home, at school, with friends, at bureaus and banks, and at work. The next questions concerned media, the press, radio, and television. The respondents were asked if they had a digital TV receiver in their household, and their preferred newspapers, radio stations and television channels were surveyed, as well as their internet and e-mail use. The survey also investigated the respondents' trust in different organisations such as the government, the church, social services, the universities, the police, and daycare services. The respondents' interest in local government and municipal politics was examined, and they were presented with statements concerning the upcoming 2008 municipal elections and asked whether they were involved in an election campaign either as a candidate or in some other way. It was also queried which party they usually voted for, if they would vote for the same party in this election, and whether they read blogs written by local councillors and municipal election candidates. The respondents were asked how local councillors should conduct municipal politics and if they felt that citizens are able to participate in decision-making. Some questions covered municipal mergers generally and in the respondents' own municipality. The next questions were formulated by the "Förvaltningslösningar språkliga konsekvenser" project (SpråKon). Questions covered the respondents' satisfaction in some aspects of their municipality of residence, including the availability of geriatric and healthcare services, schools and education, employment opportunities, public transport, culture and sports services, citizen participation possibilities, equal rights of men and women, safety, and opportunities for entrepreneurship. Finally, the respondents were asked whether they felt that people living in the municipality and neighbourhood -- Finnish-speaking, Swedish-speaking or in general -- share the same values, and which decision-making bodies have done the most to advance employment and entrepreneurship in the municipality. Background variables included, for instance, region of residence, age group, gender, education level, economic activity and occupational status, marital status, and household composition. Todennäköisyysotanta: yksinkertainen satunnaisotantaProbability.SimpleRandom Probability: Simple randomProbability.SimpleRandom Itsetäytettävä lomake: paperinen lomakeSelfAdministeredQuestionnaire.Paper Itsetäytettävä lomake: verkkolomakeSelfAdministeredQuestionnaire.CAWI Self-administered questionnaire: PaperSelfAdministeredQuestionnaire.Paper Self-administered questionnaire: Web-based (CAWI)SelfAdministeredQuestionnaire.CAWI
This dataset was created as part of the World's Largest Game of Rock, Paper, Scissors talk and challenge introduced by Joseph Nelson and Salo Levy @ SXSW 2023. * https://roboflow.com/rps
* the above image is linked to the entry page
https://i.imgur.com/eVRmfw9.gif" alt="Version 11: Deploy Tab Inference">
* the demo video was prepared from the Deploy Tab, and utilizes
v11
(YOLOv8n-100epochs
)
The dataset includes an aggregation of images cloned from the following datasets: 1. https://universe.roboflow.com/brad-dwyer/egohands-public/ - null images 2. https://universe.roboflow.com/presentations/rock-paper-scissors-presentation/ 3. https://universe.roboflow.com/team-roboflow/rock-paper-scissors-detection 4. universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/
New images were added to the dataset and labeled to supplement the examples from the cloned datasets. Members of Team Roboflow, and more close friends of the team, are included in the dataset to assist with creating a more robust, generalized, model.
https://i.imgur.com/xIudTbe.png" alt="Example Labeled Image from the dataset: Two people playing Rock, Paper, Scissors">
* the above image is linked to the FAQ and contest entry page
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 4 rows and is filtered where the books is Building a TypePad blog people want to read. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.