Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://news.yale.edu/sites/default/files/styles/featured_media/public/ynews-cancer-healthy_137381816.jpg?itok=HN73dW20&c=a75e254fe1da31f2732f6b0d7bce1413" alt="Cancer">
The dataset appears to contain information on the risk of developing or dying from various types of cancer for both males and females.
The columns include:
Gender: The type of cancer or category (e.g., "Any cancer", "Bladder", etc.). Risk of developing (Male): The percentage risk and the equivalent "one in _ person" statistic. Risk of dying (Male): The percentage risk and the equivalent "one in _ person" statistic. Risk of developing (Woman): The percentage risk and the equivalent "one in _ person" statistic. Risk of dying (Woman): The percentage risk and the equivalent "one in _ person" statistic.
Columns in the Dataset Gender Risk of developing (Male): Percentage Risk of developing (Male): One in _ Person Risk of dying (Male): Percentage Risk of dying (Male): One in _ Person Risk of developing (Woman): Percentage Risk of developing (Woman): One in _ Person Risk of dying (Woman): Percentage Risk of dying (Woman): One in _ Person
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterSUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The percentage of new cases of cancer which were diagnosed at stage 1 or 2 for the specific cancer sites, morphologies and behaviour: invasive malignancies of breast, prostate, colorectal, lung, bladder, kidney, ovary, uterus, non-Hodgkin lymphoma and invasive melanomas of skin. This indicator relates to a subset of the cancers covered by CCG indicator 1.17 Record of stage of cancer at diagnosis. Current version updated: Jun-17 Next version due: Jun-18
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two datasets that explore causes of death due to cancer in South Africa, drawing on data from the Revised Burden of Disease estimates for the Comparative Risk Factor Assessment for South Africa, 2000. The number and percentage of deaths due to cancer by cause are ranked for persons, males and females in the tables below. Lung cancer is the leading cause of cancer in SA accounting for 17% of all cancer deaths. This is followed by oesophagus Ca which accounts for 13%, cervix cancer accounting for 8%, breast cancer accounting for 8% and liver cancer which accounts for 6% of all cancers. Many more males suffer from lung and oesophagus cancer than females.
Facebook
TwitterNumber and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterThis publication sets out and comments on stage at cancer diagnosis in Clinical Commissioning Groups in England for patients diagnosed in the period 2013 to 2018. Proportion of cancers diagnosed at an early stage are presented unadjusted and adjusted for case-mix (age, sex, cancer site and socio-economic deprivation). Supporting data quality and stage completeness are presented for persons diagnosed 2001 to 2018.
The 21 cancer groups are defined as those with 1,500 cancers diagnosed annually in England and 70% staging completeness.
The statistics are obtained from the National Cancer Registration Dataset that is collected, quality assured and analysed by the National Cancer Registration and Analysis Service, part of Public Health England.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files
This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
File 1st
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
File 2nd
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Rapid Cancer Registration Data (RCRD) provides a quick, indicative source of cancer data. It is provided to support the planning and provision of cancer services. The data is based on a rapid processing of cancer registration data sources, in particular on Cancer Outcomes and Services Dataset (COSD) information. In comparison, National Cancer Registration Data (NCRD) relies on additional data sources, enhanced follow-up with trusts and expert processing by cancer registration officers. The Rapid Cancer Registration Data (RCRD) may be useful for service improvement projects including healthcare planning and prioritisation. However, it is poorly suited for epidemiological research due to limitations in the data quality and completeness.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset presents the mortality rate from cancer among individuals under the age of 75 within the Birmingham and Solihull area. It captures the number of deaths attributed to all cancers (classified under ICD-10 codes C00 to C97) and expresses this as a directly age-standardised rate per 100,000 population. The data is structured in quinary age bands and is available for both single-year and three-year rolling averages, providing a comprehensive view of premature cancer mortality trends in the region.
Rationale Reducing premature mortality from cancer is a key public health priority. This indicator helps track progress in lowering the number of cancer-related deaths among people under 75, supporting efforts to improve early diagnosis, treatment, and prevention strategies.
Numerator The numerator is the number of deaths from all cancers (ICD-10 codes C00 to C97) registered in the respective calendar years, for individuals aged under 75. These figures are aggregated into quinary age bands and sourced from the Death Register.
Denominator The denominator is the population of individuals under 75 years of age, also aggregated into quinary age bands. For single-year rates, the population for that year is used. For three-year rolling averages, the population-years are aggregated across the three years. The source of this data is the 2021 Census.
Caveats Data may not align exactly with published Office for National Statistics (ONS) figures due to differences in postcode lookup versions and the application of comparability ratios in Office for Health Improvement and Disparities (OHID) data. Users should be cautious when comparing this dataset with other national statistics.
External references Further information and related indicators can be found on the OHID Fingertips platform.
Localities ExplainedThis dataset contains data based on either the resident locality or registered locality of the patient, a distinction is made between resident locality and registered locality populations:Resident Locality refers to individuals who live within the defined geographic boundaries of the locality. These boundaries are aligned with official administrative areas such as wards and Lower Layer Super Output Areas (LSOAs).Registered Locality refers to individuals who are registered with GP practices that are assigned to a locality based on the Primary Care Network (PCN) they belong to. These assignments are approximate—PCNs are mapped to a locality based on the location of most of their GP surgeries. As a result, locality-registered patients may live outside the locality, sometimes even in different towns or cities.This distinction is important because some health indicators are only available at GP practice level, without information on where patients actually reside. In such cases, data is attributed to the locality based on GP registration, not residential address.
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description: Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area. The key challenges against it’s detection is how to classify tumors into malignant (cancerous) or benign(non cancerous). We ask you to complete the analysis of classifying these tumors using machine learning (with SVMs) and the Breast Cancer Wisconsin (Diagnostic) Dataset. Acknowledgements: This dataset has been referred from Kaggle. Objective: Understand the Dataset & cleanup (if required). Build classification models to predict whether the cancer type is Malignant or Benign. Also fine-tune the hyperparameters & compare the evaluation metrics of various classification algorithms.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive one year after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for Lung Cancer
Dataset Summary
The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system .
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/lung-cancer.
Facebook
TwitterMortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive five years after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objective: To identify the socioepidemiologic and histopathologic patterns of lung cancer patients in the Middle Euphrates region. Patients and Methods: This study analyzed medical information from lung cancer patients at the Middle Euphrates Cancer Center in Iraq from January 2018 to December 2023. Demographic information (age, gender, residency, and education level) as well as clinical details (histopathological categorization) were obtained. The inclusion criteria included all confirmed lung cancer cases, while cases with inadequate data or non-lung cancer diagnosis were omitted. The data were analyzed using IBM SPSS Statistics (version 26). The data summarized using descriptive statistics, and chi-square tests used to identify correlations between categorical variables at a significance level of p < 0.05. Ethical approval was obtained from the relevant institutional review board. Results: A total of 1162 patients were included with mean age at diagnosis(64.47±11.45) years. Majority of patients are over 60 years (64.4%), followed by (40–60 years), 34%, and the least affected group is under 40 years (1.6%). Males account for the majority of cases (68%), while females about 32%, with male:female ratio that fluctuate around 2:1. Illiterate patients and those with low education levels represent the largest proportion accounting for about 87.9% of the study population. Squamous Cell Carcinoma (SCC) is the most frequent subtype (41.7%), followed closely by Adenocarcinoma (AC) at 37%, and Small Cell Lung Cancer (SCLC), 10.5%. Although SCC is the predominant subtype overall, AC incidence is increasing overtime (from 31.7% in 2018 to 41.4% in 2023) with predominance in females, younger and higher educated groups. While the percentage of SCLC and other less common subgroups remained relatively stable over time, there is a significant reduction in NSCLC-NOS diagnoses (from 11.1% in 2018 to 3.2% in 2023). Conclusions: In Iraq, specifically in the Middle Euphrates region, lung cancer is a major public health issue in the elder age groups. The two main subtypes, SCC and AC, are the main contributors, with obvious increment in AC cases in the recent years. The shifting trends indicate the urgent need for improved screening strategies, focused preventative initiatives, and customized treatment plans in view of changing risk profiles.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number and percentage of patients by stage at diagnosis for Breast, Colorectal and Lung cancer by NHS Board of residence, Cancer networks and Scotland. Numbers for the 3-cancers combined for 2010 and 2011 to provide baseline data to support the HEAT Decect Cancer Early (DCE) target. Source agency: ISD Scotland (part of NHS National Services Scotland) Designation: Official Statistics not designated as National Statistics Language: English Alternative title: Detect cancer early
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.