Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---
By Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Synthetic Colorectal Cancer Global Dataset is a fully anonymised, high-dimensional synthetic dataset designed for global cancer research, predictive modelling, and educational use. It encompasses demographic, clinical, lifestyle, genetic, and healthcare access factors relevant to colorectal cancer incidence, outcomes, and survivability.
https://storage.googleapis.com/opendatabay_public/ae2aba99-491d-45a1-a99e-7be14927f4af/299af3fa2502_patient_analysis_plots.png" alt="Synthetic Colorectal Cancer Global Data Distribution.png">
This dataset can be used for:
The dataset includes 100% synthetic yet clinically plausible records from diverse countries and demographic groups. It is anonymized and modeled to reflect real-world variability in risk factors, diagnosis stages, treatment, and survival without compromising patient privacy.
CC0 (Public Domain)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.
"Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).
Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:
Which standard population is used for comparison basically, does not matter. It is important, however, that
The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.
Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System
No restrictions are known to the author. Standard populations are published by different organisations for public usage.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset 📌 Overview This dataset has been carefully synthesized to support research in lung cancer survival prediction, enabling the development of models that estimate:
Whether a patient is likely to survive at least one year post-diagnosis (Binary Classification). The probability of survival based on clinical and lifestyle factors (Regression Analysis). The dataset is designed for machine learning and deep learning applications in medical AI, oncology research, and predictive healthcare.
📜 Dataset Generation Process The dataset was generated using a combination of real-world epidemiological insights, medical literature, and statistical modeling. The feature distributions and relationships have been carefully modeled to reflect real-world clinical scenarios, ensuring biomedical validity.
📖 Medical References & Sources The dataset structure is based on well-established lung cancer risk factors and survival indicators documented in leading medical research and clinical guidelines:
World Health Organization (WHO) Reports on lung cancer epidemiology. National Cancer Institute (NCI) & American Cancer Society (ACS) guidelines on lung cancer risk factors and treatment outcomes. The IASLC Lung Cancer Staging Project (8th Edition): Standard reference for lung cancer staging. Harrison’s Principles of Internal Medicine (20th Edition): Provides an in-depth review of lung cancer diagnosis and treatment. Lung Cancer: Principles and Practice (2022, Oxford University Press): Clinical insights into lung cancer detection, treatment, and survival factors. 🔬 Features of the Dataset Each record in the dataset represents an individual’s clinical condition, lifestyle risk factors, and survival outcome. The dataset includes the following features:
1️⃣ Patient Demographics Age → A key risk factor for lung cancer progression and survival. Gender → Male and female lung cancer survival rates can differ. Residence → Urban vs. Rural (impact of environmental factors). 2️⃣ Risk Factors & Lifestyle Indicators These factors have been linked to lung cancer risk in epidemiological studies:
Smoking Status → (Current Smoker, Former Smoker, Never Smoked). Air Pollution Exposure → (Low, Moderate, High). Biomass Fuel Use → (Yes/No) – Associated with household air pollution. Factory Exposure → (Yes/No) – Industrial exposure increases lung cancer risk. Family History → (Yes/No) – Genetic predisposition to lung cancer. Diet Habit → (Vegetarian, Non-Vegetarian, Mixed) – Nutritional impact on cancer progression. 3️⃣ Symptoms (Primary Predictors) These are key clinical indicators associated with lung cancer detection and severity:
Hemoptysis (Coughing Blood) Chest Pain Fatigue & Weakness Chronic Cough Unexplained Weight Loss 4️⃣ Tumor Characteristics & Clinical Features Tumor Size (mm) → The size of the detected tumor. Histology Type → (Adenocarcinoma, Squamous Cell Carcinoma, Small Cell Carcinoma). Cancer Stage → (Stage I to Stage IV). 5️⃣ Treatment & Healthcare Facility Treatment Received → (Surgery, Chemotherapy, Radiation, Targeted Therapy). Hospital Type → (Private, Government, Medical College). 6️⃣ Target Variables (Predicted Outcomes) Survival (Binary) → 1 (Yes) if the patient survives at least 1 year, 0 (No) otherwise. Survival Probability (%) (Can be derived) → Estimated probability of survival within one year. ⚡ Why This Dataset is Valuable? ✅ Balanced Data Distribution Designed to ensure a representative distribution of lung cancer survival cases. Prevents model bias and improves generalization in predictive models. ✅ Medically-Inspired Feature Engineering Features are derived from real-world lung cancer risk factors, validated through medical literature. Incorporates both lifestyle and clinical indicators to enhance predictive accuracy.(no real person data is used,just have made an biomedical environment) ✅ Diverse Risk Factors Considered Smoking, air pollution, and genetic history as primary lung cancer contributors. Symptom severity and tumor histology influence survival rates. ✅ Scalability & ML Suitability Ideal for classification and regression tasks in machine learning. Can be used with deep learning (TensorFlow, PyTorch), ML models (XGBoost, Random Forest, SVM), and explainable AI techniques like SHAP and LIME. 📂 Dataset Usage & Applications This dataset is highly useful for multiple healthcare AI applications, including:
🩺 Predictive Analytics → Early detection of high-risk lung cancer patients. 🤖 Healthcare Chatbots → AI-powered risk assessment tools.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Breast Cancer Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yasserh/breast-cancer-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area.
The key challenges against it’s detection is how to classify tumors into malignant (cancerous) or benign(non cancerous). We ask you to complete the analysis of classifying these tumors using machine learning (with SVMs) and the Breast Cancer Wisconsin (Diagnostic) Dataset.
This dataset has been referred from Kaggle.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 20.900 NA in 2016. This records an increase from the previous number of 20.800 NA for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 21.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 22.600 NA in 2000 and a record low of 20.800 NA in 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 13.400 % in 2016. This records an increase from the previous number of 13.300 % for 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 13.400 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 17.300 % in 2000 and a record low of 13.300 % in 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 16.400 % in 2016. This records a decrease from the previous number of 16.500 % for 2015. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 17.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.900 % in 2000 and a record low of 16.400 % in 2016. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 22.500 % in 2016. This stayed constant from the previous number of 22.500 % for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 22.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 25.500 % in 2000 and a record low of 22.500 % in 2016. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Number and rate of new cancer cases by stage at diagnosis from 2011 to the most recent diagnosis year available. Included are colorectal, lung, breast, cervical and prostate cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
# # # Machine Learning Model for identifying Cell Nuclei from Histology Images
Machine learning model for identifying cell nuclei from histology images. The model having the ability to generalize across a variety of lighting conditions, cell types, magnifications, and imaging modalities.Imagine speeding up research for almost every disease, from lung cancer and heart disease to rare disorders. The Data Science Bowl offers to data scientist / practitioner a most ambitious mission i.e. create an algorithm to automate nucleus detection & create an algorithm to detect all non overlapped nuclei from the given test data i.e. It should have the capability for instance segmentation. We’ve all seen people suffer from diseases like cancer, heart disease, chronic obstructive pulmonary disease, Alzheimer’s, and diabetes. Many have seen their loved ones pass away. Think how many lives would be transformed if cures came faster. By automating nucleus detection, you could help unlock cures faster—from rare disorders to the common cold
# ## Why nuclei?
Identifying the cells’ nuclei is the starting point for most analyses because most of the human body’s 30 trillion cells contain a nucleus full of DNA, the genetic code that programs each cell. Identifying nuclei allows researchers to identify each individual cell in a sample, and by measuring how cells react to various treatments, the researcher can understand the underlying biological processes at work.By participating, teams will work to automate the process of identifying nuclei, which will allow for more efficient drug testing, shortening the 10 years it takes for each new drug to come to market
The success and final outcome of this project required a lot of guidance and assistance from many people and I am extremely privileged to have got this all along the completion of my project. All that I have done is only due to such supervision and assistance and I would not forget to thank them.I owe my deep gratitude to our project guide C - DAC Noida, who took keen interest on my project work and guided me all along, till the completion of our project work by providing all the necessary information for developing a good system.
The Data Science Bowl, presented by Booz Allen and Kaggle, is the world’s premier data science for social good competition. The Data Science Bowl brings together data scientists, technologists, domain experts, and organizations to take on the world’s challenges with data and technology. It’s a platform through which people can harness their passion, unleash their curiosity, and amplify their impact to effect change on a global scale
https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/
This csv reports melanoma registration rates, per 100,000 population, by age. Age is grouped in 5 year segments (eg 0–4 years old, 5–9 years old).
New Zealand and Australia have the world’s highest rates of melanoma, the most serious type of skin cancer. Melanoma is mainly caused by exposure to ultraviolet (UV) light, usually from the sun. New Zealand has naturally high UV levels, especially during summer.
The risk of developing melanoma is affected by factors such as skin colour and type, family history, and the amount of sun exposure. Melanoma can affect people at any age, but the chance of developing a melanoma increases with age. We report on age-standardised rates of melanoma to account for the increasing proportion of older people in our population.
Our data on melanoma registrations come from the New Zealand Cancer Registry and the Ministry of Health's Mortality Collection. The passing of the Cancer Registry Act 1993 and Cancer Registry Regulations 1994 led to significant improvements in data quality and coverage (Ministry of Health, 2013). A sharp increase in registrations after 1993 is likely to have been related to these legislative and regulatory changes; for this reason we have only analysed data from 1996.
2014–15 data are provisional and subject to change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 28.200 NA in 2016. This records a decrease from the previous number of 28.500 NA for 2015. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 27.700 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 28.500 NA in 2015 and a record low of 25.200 NA in 2000. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundWe aim to evaluate the global, regional, and national burden of Uterine Cancer (UC) from 1990 to 2019.MethodsWe gathered UC data across 204 countries and regions for the period 1990-2019, utilizing the Global Burden of Disease Database (GBD) 2019 public dataset. Joinpoint regression analysis was employed to pinpoint the year of the most significant changes in global trends. To project the UC trajectory from 2020 to 2044, we applied the Nordpred analysis, extrapolating based on the average trend observed in the data. Furthermore, the Bayesian Age-Period-Cohort (BAPC) model with integrated nested Laplace approximations was implemented to confirm the stability of the Nordpred analysis predictions.ResultsGlobally, the age-standardized rate (ASR) of incidence for UC has increased from 1990 to 2019 with an Average Annual Percentage Change (AAPC) of 0.50%. The ASR for death has declined within the same period (AAPC: -0.8%). An increase in the ASR of incidence was observed across all Socio-demographic Index (SDI) regions, particularly in High SDI regions (AAPC: 1.12%), while the ASR for death decreased in all but the Low SDI regions. Over the past 30 years, the highest incidence rate was observed in individuals aged 55-59 (AAPC: 0.76%). Among 204 countries and regions, there was an increase in the ASR of incidence in 165 countries and an increase in the ASR of deaths in 77 countries. Our projections suggest that both the incidence and death rates for UC are likely to continue their decline from 2020 to 2044.ConclusionsUC has significantly impacted global health negatively, with its influence stemming from a range of factors including geographical location, age-related and racial disparities, and SDI.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aim: We aimed to estimate the disease burden and risk factors attributable to ovarian cancer, and epidemiological trends at global, regional, and national levels.Methods: We described ovarian cancer data on incidence, mortality, and disability-adjusted life-years as well as age-standardized rates from 1990 to 2017 from the Global Health Data Exchange database. We also estimated the risk factors attributable to ovarian cancer deaths and disability-adjusted life-years. Measures were stratified by region, country, age, and socio-demographic index. The estimated annual percentage changes and age-standardized rates were calculated to evaluate temporal trends.Results: Globally, ovarian cancer incident, death cases, and disability-adjusted life-years increased by 88.01, 84.20, and 78.00%, respectively. However, all the corresponding age-standardized rates showed downward trends with an estimated annual percentage change of −0.10 (−0.03 to 0.16), −0.33 (−0.38 to −0.27), and −0.38 (−0.32 to 0.25), respectively. South and East Asia and Western Europe carried the heaviest disease burden. The highest incidence, deaths, and disability-adjusted life-years were mainly in people aged 50–69 years from 1990 to 2017. High fasting plasma glucose level was the greatest contributor in age-standardized disability-adjusted life-years rate globally as well as in all socio-demographic index quintiles and most Global Disease Burden regions. Other important factors were high body mass index and occupational exposure to asbestos.Conclusion: Our study provides valuable information on patterns and trends of disease burden and risk factors attributable to ovarian cancer across age, socio-demographic index, region, and country, which may help improve the rational allocation of health resources as well as inform health policies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---