Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Dataset population: Households with at least one person working or studying (persons in employment the week before the census and full-time students)
Car or van availability
The number of cars or vans that are owned, or available for use, by one or more members of a household. This includes company cars and vans that are available for private use. It does not include motorbikes or scooters, or any cars or vans belonging to visitors.
Households with 10 to 20 cars or vans were counted as having only 1. Responses indicating a number of cars or vans greater than 20 were treated as invalid and a value was imputed.
The count of cars or vans in an area relates only to households. Cars or vans used by residents of communal establishments were not counted.
Means of travel to place of work or study (alternate classification)
The method of travel used for the longest part, by distance, of the usual journey to work or place of study (including school).
Number of people in household working or studying
Provides a count of the number of people working or studying in a household.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.
The main means of travel to work categories are:
Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.
Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.
Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Workplace address time series
Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.
Working at home
In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to work quality rating
Main means of travel to work is rated as moderate quality.
Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Workplace address quality rating
Workplace address is rated as moderate quality.
Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Data files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
Tables VEH0101 and VEH1104 have not yet been revised to include the recent changes to Large Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV) definitions for data earlier than 2023 quarter 4. This will be amended as soon as possible.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/689a1dddad0cbc0e27643253/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 154 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/6846e8dcd25e6f6afd4c01d5/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 33 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/689a1dde9c63e0ee87656a9c/veh0105.ods">Licensed vehicles at the end of the quarter by body type, fuel type, keepership (private and company) and upper and lower tier local authority: Great Britain and United Kingdom (ODS, 16 MB)
VEH0206: https://assets.publishing.service.gov.uk/media/6846e8dee5a089417c806179/veh0206.ods">Licensed cars at the end of the year by VED band and carbon dioxide (CO2) emissions: Great Britain and United Kingdom (ODS, 42.3 KB)
VEH0601: https://assets.publishing.service.gov.uk/media/6846e8df5e92539572806176/veh0601.ods">Licensed buses and coaches at the end of the year by body type detail: Great Britain and United Kingdom (ODS, 24.6 KB)
VEH1102: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617b/veh1102.ods">Licensed vehicles at the end of the year by body type and keepership (private and company): Great Britain and United Kingdom (ODS, 146 KB)
VEH1103: https://assets.publishing.service.gov.uk/media/689a1de1e7be62b4f0643252/veh1103.ods">Licensed vehicles at the end of the quarter by body type and fuel type: Great Britain and United Kingdom (ODS, 1010 KB)
VEH1104: https://assets.publishing.service.gov.uk/media/689a1de1e7be62b4f0643253/veh1104.ods">Licensed vehicles at the end of the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Meter. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Meter, the median income for all workers aged 15 years and older, regardless of work hours, was $71,458 for males and $48,500 for females.
These income figures highlight a substantial gender-based income gap in Van Meter. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the city of Van Meter.
- Full-time workers, aged 15 years and older: In Van Meter, among full-time, year-round workers aged 15 years and older, males earned a median income of $85,238, while females earned $56,750, leading to a 33% gender pay gap among full-time workers. This illustrates that women earn 67 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Van Meter, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van Meter median household income by race. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents in households in England and Wales by distance travelled to work and by car or van availability. The estimates are as at Census Day, 21 March 2021.
As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, data is available by:
country - for example, Wales region - for example, London local authority - for example, Cornwall health area – for example, Clinical Commissioning Group statistical area - for example, MSOA or LSOA
Distance travelled to work
The distance, in kilometres, between a person's residential postcode and their workplace postcode measured in a straight line. A distance travelled of 0.1km indicates that the workplace postcode is the same as the residential postcode. Distances over 1200km are treated as invalid, and an imputed or estimated value is added.
“Work mainly at or from home” is made up of those that ticked either the "Mainly work at or from home" box for the address of workplace question, or the “Work mainly at or from home” box for the method of travel to work question.
Distance is calculated as the straight line distance between the enumeration postcode and the workplace postcode.
Combine this variable with “Economic activity status” to identify those in employment at the time of the census.
Car or van availability
The number of cars or vans owned or available for use by household members.
Vehicles included:
Vehicles not included:
The number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.
Households with 10 to 20 cars or vans are counted as having only 10.
Households with more than 20 cars or vans were treated as invalid and a value imputed.
Accessibility of tables
The department is currently working to make our tables accessible for our users. The data tables for these statistics are now accessible.
We would welcome any feedback on the accessibility of our tables, please email us.
TSGB0101: https://assets.publishing.service.gov.uk/media/6762e055cdb5e64b69e307ab/tsgb0101.ods">Passenger transport by mode from 1952 (ODS, 24.2 KB)
TSGB0102: https://assets.publishing.service.gov.uk/media/6762e05eff2c870561bde7ef/tsgb0102.ods">Passenger journeys on public transport vehicles from 1950 (ODS, 13.9 KB)
TSGB0103 (NTS0303): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/821414/nts0303.ods" class="govuk-link">Average number of trips, stages, miles and time spent travelling by main mode (ODS, 55KB)
TSGB0104 (NTS0409a): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/821479/nts0409.ods" class="govuk-link">Average number of trips by purpose and main mode (ODS, 122KB)
TSGB0105 (NTS0409b): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/821479/nts0409.ods" class="govuk-link">Average distance travelled by purpose and main mode (ODS, 122KB)
Table TSGB0106 - people entering central London during the morning peak, since 1996
The data source for this table has been discontinued since it was last updated in December 2019.
TSGB0107 (RAS0203): https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods" class="govuk-link">Passenger casualty rates by mode (ODS, 21KB)
TSGB0108: https://assets.publishing.service.gov.uk/media/675968b1403b5cf848a292b2/tsgb0108.ods">Usual method of travel to work by region of residence (ODS, 50.1 KB)
TSGB0109: https://assets.publishing.service.gov.uk/media/6751b8c60191590a5f351191/tsgb0109.ods">Usual method of travel to work by region of workplace (ODS, 51.9 KB)
TSGB0110: https://assets.publishing.service.gov.uk/media/6751b8cf19e0c816d18d1e13/tsgb0110.ods">Time taken to travel to work by region of workplace (ODS, 40 KB)
TSGB0111: https://assets.publishing.service.gov.uk/media/6751b8e72086e98fae35119d/tsgb0111.ods">Average time taken to travel to work by region of workplace and usual method of travel (ODS, 42.5 KB)
TSGB0112: https://assets.publishing.service.gov.uk/media/6751b8f26da7a3435fecbd60/tsgb0112.ods">How workers usually travel to work by car by region of workplace (ODS, 24.7 KB)
<h2 id=
These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van, the median income for all workers aged 15 years and older, regardless of work hours, was $46,861 for males and $24,301 for females.
These income figures highlight a substantial gender-based income gap in Van. Women, regardless of work hours, earn 52 cents for each dollar earned by men. This significant gender pay gap, approximately 48%, underscores concerning gender-based income inequality in the city of Van.
- Full-time workers, aged 15 years and older: In Van, among full-time, year-round workers aged 15 years and older, males earned a median income of $61,544, while females earned $42,813, leading to a 30% gender pay gap among full-time workers. This illustrates that women earn 70 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Van.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Buren County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Buren County, the median income for all workers aged 15 years and older, regardless of work hours, was $36,347 for males and $23,853 for females.
These income figures highlight a substantial gender-based income gap in Van Buren County. Women, regardless of work hours, earn 66 cents for each dollar earned by men. This significant gender pay gap, approximately 34%, underscores concerning gender-based income inequality in the county of Van Buren County.
- Full-time workers, aged 15 years and older: In Van Buren County, among full-time, year-round workers aged 15 years and older, males earned a median income of $50,457, while females earned $38,860, leading to a 23% gender pay gap among full-time workers. This illustrates that women earn 77 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Van Buren County.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van Buren County median household income by race. You can refer the same here
This Mikrozensus special survey consists of two parts of the traffic statistics: motor vehicles and driving licenses The first part is a repetition of the Mikrozensus special survey from September 1971 (Mikrozensus MZ7103) on motor vehicles and their road performance. The results of this survey were the basis for studies and measure in the fields of traffic policy, road safety and the general transport. By repeating this special survey, new data for these fields is collected. Moreover, changes due to the strong increase in the number of vehicles are are evaluated. More attention, than in the study from 1971, is also given to the energy consumption resulting from the performance of the vehicle. The questions are only on certain types of vehicles which are of special interest due to their road performance (passenger cars, estate cars, motorcycles, mopeds). Preliminary, important vehicle data and personal data of its owner are are collected. Then the questions are on the mileage at the time the vehicle was bought and at the time of the survey, as well as on the last working day’s and last weekend’s mileage. Owner’s of passenger- or estate cars are also asked how many people usually drive the car (as driver or passenger) from Monday to Friday as well as on the weekends and for what what purpose the car is mainly used. Up until now, statistics on driving licenses have only been conducted in some states on varying form (and therefore not really comparable). The results of this survey should provide information for the whole federal territory on the number of people with driving licenses, the data of the acquiring of the licence and the groups these licenses refer to. Probability: Stratified: Disproportional Face-to-face interview
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in employment the week before the census in England and Wales by their method used to travel to work (2001 specification). The estimates are as at Census Day, 21 March 2021.
As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes.
Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Method used to travel to workplace (12 categories)
A person's place of work and their method of travel to work. This is the 2001 method of producing travel to work variables.
"Work mainly from home" applies to someone who indicated their place of work as their home address and travelled to work by driving a car or van, for example visiting clients.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify households in England and Wales by accommodation type, by car or van availability, and by number of usual residents aged 17 years or over in the household. The estimates are as at Census Day, 21 March 2021.
The ONS have made changes to housing definitions since the 2011 Census. Take care if you compare Census 2021 results for this topic with those from the 2011 Census. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Accommodation type
The type of building or structure used or available by an individual or household.
This could be:
More information about accommodation types
Whole house or bungalow:
This property type is not divided into flats or other living accommodation. There are three types of whole houses or bungalows.
Detached:
None of the living accommodation is attached to another property but can be attached to a garage.
Semi-detached:
The living accommodation is joined to another house or bungalow by a common wall that they share.
Terraced:
A mid-terraced house is located between two other houses and shares two common walls. An end-of-terrace house is part of a terraced development but only shares one common wall.
Flats (Apartments) and maisonettes:
An apartment is another word for a flat. A maisonette is a 2-storey flat.
Car or van availability
The number of cars or vans owned or available for use by household members.
Vehicles included:
Vehicles not included:
The number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.
Households with 10 to 20 cars or vans are counted as having only 10.
Households with more than 20 cars or vans were treated as invalid and a value imputed.
Number of people aged 17 years or over in household
The number of people in a household aged 17 years and over.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsCar availabilityThis dataset provides Census 2021 estimates on the number of cars or vans available to members of households for England and Wales. The estimates are as at Census Day, 21 March 2021.Definition: The number of cars or vans owned or available for use by household members.Vehicles included:pick-ups, camper vans and motor homesvehicles that are temporarily not working vehicles that have failed their MOTvehicles owned or used by a lodgercompany cars or vans if they're available for private useVehicles not included:motorbikes, trikes, quad bikes or mobility scootersvehicles that have a Statutory Off Road Notification (SORN)vehicles owned or used only by a visitor vehicles that are kept at another address or not easily accessedThe number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.Households with 10 to 20 cars or vans are counted as having only 10.Households with more than 20 cars or vans were treated as invalid and a value imputed.This dataset includes data for Leicester city and England overall.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Horne. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Horne, the median income for all workers aged 15 years and older, regardless of work hours, was $43,125 for males and $40,859 for females.
Based on these incomes, we observe a gender gap percentage of approximately 5%, indicating a significant disparity between the median incomes of males and females in Van Horne. Women, regardless of work hours, still earn 95 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Van Horne, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,000, while females earned $47,768, leading to a 20% gender pay gap among full-time workers. This illustrates that women earn 80 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Van Horne offers better opportunities for women in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van Horne median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Meter. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2021
Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Meter, the median income for all workers aged 15 years and older, regardless of work hours, was $66,849 for males and $47,268 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in Van Meter. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Van Meter.
- Full-time workers, aged 15 years and older: In Van Meter, among full-time, year-round workers aged 15 years and older, males earned a median income of $82,108, while females earned $59,515, leading to a 28% gender pay gap among full-time workers. This illustrates that women earn 72 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Van Meter, showcasing a consistent income pattern irrespective of employment status.
https://i.neilsberg.com/ch/van-meter-ia-income-by-gender.jpeg" alt="Van Meter, IA gender based income disparity">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van Meter median household income by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Buren. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Buren, the median income for all workers aged 15 years and older, regardless of work hours, was $37,836 for males and $24,531 for females.
These income figures highlight a substantial gender-based income gap in Van Buren. Women, regardless of work hours, earn 65 cents for each dollar earned by men. This significant gender pay gap, approximately 35%, underscores concerning gender-based income inequality in the city of Van Buren.
- Full-time workers, aged 15 years and older: In Van Buren, among full-time, year-round workers aged 15 years and older, males earned a median income of $52,533, while females earned $37,071, leading to a 29% gender pay gap among full-time workers. This illustrates that women earn 71 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Van Buren.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Van Buren median household income by race. You can refer the same here
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Since the launch of the iZEV Program on May 1, 2019, Transport Canada has been producing statistics on consumer uptake under the program for the following variables: - Province/territory or all of Canada - Province/territory and postal code of the dealership each vehicle was purchased/leased from - Make and/or model (including model year) - Engine type (i.e., 100% battery electric versus plug-in hybrids - both over and under 50 km of electric range.) - Recipient type (i.e., individual or organization and purchase or lease) - A time period, including: * A specific month * Ranges of months (e.g., June 2020 to January 2021) * Calendar year (January 1 to December 31) * The Government of Canada’s fiscal year (April 1 to March 31) The current data provides iZEV monthly statistics. Revisions of archived data will be updated quarterly, these revisions are generally minor and are mainly due to approval of incentive requests that were incomplete when first submitted to Transport Canada. Most revisions are typically from the most recent three-month period. If you have any questions, please contact us at iZEV-iVZE@tc.gc.ca
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify households in England and Wales by car or van availability and by household composition. The estimates are as at Census Day, 21 March 2021.
Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, data is available by:
country - for example, Wales region - for example, London local authority - for example, Cornwall health area – for example, Clinical Commissioning Group statistical area - for example, MSOA or LSOA
Car or van availability
The number of cars or vans owned or available for use by household members.
Vehicles included:
Vehicles not included:
The number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.
Households with 10 to 20 cars or vans are counted as having only 10.
Households with more than 20 cars or vans were treated as invalid and a value imputed.
Household composition
Households according to the relationships between members.
One-family households are classified by:
Other households are classified by:
Data about household relationships might not always look consistent with legal partnership status. This is because of complexity of living arrangements and the way people interpreted these questions. Take care when using these two variables together.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThis dataset comprises detailed records of motor vehicle crashes occurring in Ohio, USA, from January 1, 2017, to December 31, 2023. Collected by law enforcement agencies using standardized OH-1 crash reporting forms and centralized by the Ohio Department of Public Safety, the dataset captures detailed information on 1,679,019 crashes involving 2,656,086 vehicles and 3,577,822 occupants. Structured across three levels—crash, vehicle, and occupant—the dataset includes attributes such as crash timing and location, environmental and road conditions, vehicle specifications, operational factors, occupant demographics, injury severity, safety equipment usage, and behavioral indicators like alcohol or drug involvement. Severity information is documented at both the crash and individual occupant levels, covering outcomes ranging from no injury to fatal incidents. The dataset features a total of 119 systematically named variables at the crash, vehicle, and occupant levels. A complete list of features, along with categorical value mappings, is provided in the accompanying documentation.Description of the data and file structureThis dataset contains comprehensive records of motor vehicle crashes reported across the state of Ohio, USA, from January 1, 2017, to December 31, 2023. The data were collected by law enforcement agencies using standardized crash reporting forms (OH-1) and centralized through the Ohio Department of Public Safety’s data systems.It captures detailed, structured information related to crash events, vehicles involved, and individuals affected. Each data sample corresponds to an occupant of a vehicle. There are unique identifiers for each crash and involved vehicle. Hence, the dataset is organized into three primary levels:Crash-Level Data: Includes unique identifiers for each of the 1,679,019 reported crashes, along with temporal details (date, time), location attributes, environmental conditions (e.g., weather, light, road surface), and overall crash characteristics (e.g., number of units involved, severity classification, work zone presence). The identifier for the crash is the feature “DocumentNumber”.Vehicle-Level Data: Comprises identifiers for each of the 2,656,086 vehicles (units) involved in a crash. Attributes include vehicle type, make, model, year of manufacture, vehicle defects, and operational details such as posted speed, traffic control devices, and pre-crash actions. Interacting vehicle types and hazardous material indicators are also documented. Vehicle-Level features are identified by the prefix ”Units.” in the feature name.Occupant-Level Data: Contains 3,577,822 records detailing individuals involved in crashes. This includes demographic information (age, gender), seating position, person injury severity, use of safety equipment (e.g., seat belts, airbags, helmets), and behavioral factors such as alcohol or drug involvement, distraction status, and test results where applicable. Occupant-Level features are identified by the prefix “Units.People.” in the feature name.The severity of the accident is also documented. The “CrashSeverity” feature document the severity of the crash in the following levels: Fatal (15021), Suspected Serious Injury (83764), Suspected Minor Injury (483026), Possible Injury (461019), and No Apparent Injury (2440823). Similarly, also individual people injury levels are recorded in the feature “Units.People.Injury”. The file "summary_2023_new.pdf" is a summary file that contains data analysis of the dataset (statistics and plots).There are 119 unique features in the data, and their complete list of name and type is reported below. Their categorical levels in case of integer-encoding is found in the file “mapping.yaml”.Access informationOther publicly accessible locations of the data:The full dataset submitted to figshare is not available elsewhere in its complete and curated form. However, data covering the most recent five years, including the current year, are publicly accessible through the following sources:Ohio Department of Public Safety Crash Retrieval Portal: https://ohtrafficdata.dps.ohio.gov/crashretrievalOhio Statistics and Analytics for Traffic Safety (OSTATS): https://statepatrol.ohio.gov/dashboards-statistics/ostats-dashboardsThese public portals provide access to selected crash data but do not include the full historical dataset or the cleaned, integrated, and reformatted version provided through this submission.Data was derived from the following sources:Ohio Department of Public SafetyHuman subjects dataThis dataset was derived entirely from publicly available traffic crash reports collected and disseminated by the Ohio Department of Public Safety through the Ohio Statistics and Analytics for Traffic Safety (OSTATS) platform.To ensure compliance with ethical standards for data sharing, this dataset contains no direct identifiers (e.g., names, addresses, license plate numbers, or VINs linked to individuals). All personal identifiers have been removed or were not included in the public dataset. Furthermore, the dataset contains no more than three indirect identifiers per record. These indirect identifiers (e.g., crash year, crash county, and age group) were selected based on their relevance to the study while minimizing re-identification risk.Where possible, continuous variables were converted to categories (e.g., age groups instead of exact age), and geographic detail was limited to broader regional indicators rather than precise location data. Data cleaning and aggregation procedures were conducted to further reduce identifiability while retaining the analytic value of the dataset for modeling injury risk across system domains.As described in the associated manuscript, all analyses were conducted on this de-identified dataset, and no additional linkage to identifiable information was performed. As such, this dataset does not require IRB oversight or data use agreements and is suitable for open-access publication under CC-BY licence.No direct interaction or intervention with human participants occurred during the creation of this dataset, and no personally identifiable information (PII) is included.Given the publicly available nature of the source data and the absence of PII, explicit participant consent was not required. However, by relying exclusively on open-access government data and following de-identification protocols aligned with the Common Rule (45 CFR 46), this dataset meets ethical standards for public data sharing.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for households from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.
The variables included in this dataset are for households in occupied private dwellings (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated):
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Household crowding
Household crowding is based on the Canadian National Occupancy Standard (CNOS). It calculates the number of bedrooms needed based on the demographic composition of the household. The household crowding index methodology for 2023 Census has been updated to use gender instead of sex. Household crowding should be used with caution for small geographical areas due to high volatility between census years as a result of population change and urban development. There may be additional volatility in areas affected by the cyclone, particularly in Gisborne and Hawke's Bay. Household crowding index – 2023 Census has details on how the methodology has changed, differences from 2018 Census, and more.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-997 Not available
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Dataset population: Households with at least one person working or studying (persons in employment the week before the census and full-time students)
Car or van availability
The number of cars or vans that are owned, or available for use, by one or more members of a household. This includes company cars and vans that are available for private use. It does not include motorbikes or scooters, or any cars or vans belonging to visitors.
Households with 10 to 20 cars or vans were counted as having only 1. Responses indicating a number of cars or vans greater than 20 were treated as invalid and a value was imputed.
The count of cars or vans in an area relates only to households. Cars or vans used by residents of communal establishments were not counted.
Means of travel to place of work or study (alternate classification)
The method of travel used for the longest part, by distance, of the usual journey to work or place of study (including school).
Number of people in household working or studying
Provides a count of the number of people working or studying in a household.