https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The cost of living is a scorching topic. This dataset is composed of tweets sent from August 20 to Sept 9 2022, with over 144k tweets. All tweets are in English and are from different countries. Below is a breakdown of columns and the data in them.
https://images.unsplash.com/photo-1553729459-efe14ef6055d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1770&q=80" alt="">
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.
Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.
"I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.
I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."
This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'
The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot
I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.
Social network X/Twitter is particularly popular in the United States, and as of February 2025, the microblogging service had an audience reach of 103.9 million users in the country. Japan and the India were ranked second and third with more than 70 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average Twitter user spends 5.1 hours per month on the platform.
The number of Twitter users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.9 million users (+5.1 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 18.55 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus.
Most people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. However, some will become seriously ill and require medical attention.
Dataset The dataset includes variables related to Twitter, such as the text of various tweets and the accounts that tweeted them, the hashtags used, and the accounts' locations.
CC0
Original Data Source: Covid_19 Tweets Dataset
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ISCA project compiled this dataset using an annotation portal, which was used to label tweets as either biased or non-biased, among other labels. Note that the annotation was done on live data, including images and context, such as threads. The original data comes from annotationportal.com. They include representative samples of live tweets from the years 2020 and 2021 with the keywords "Asians, Blacks, Jews, Latinos, and Muslims".
A random sample of 600 tweets per year was drawn for each of the keywords. This includes retweets. Due to a sampling error, the sample for the year 2021 for the keyword "Jews" has only 453 tweets from 2021 and 147 from the first eight months of 2022 and it includes some tweets from the query with the keyword "Israel." The tweets were divided into six samples of 100 tweets, which were then annotated by three to seven students in the class "Researching White Supremacism and Antisemitism on Social Media" taught by Gunther Jikeli, Elisha S. Breton, and Seth Moller at Indiana University in the fall of 2022, see this report. Annotators used a scale from 1 to 5 (confident not biased, probably not biased, don't know, probably biased, confident biased). The definitions of bias against each minority group used for annotation are also included in the report.
If a tweet called out or denounced bias against the minority in question, it was labeled as "calling out bias."
The labels of whether a tweet is biased or calls out bias are based on a 75% majority vote. We considered "probably biased" and "confident biased" as biased and "confident not biased," "probably not biased," and "don't know" as not biased.
The types of stereotypes vary widely across the different categories of prejudice. While about a third of all biased tweets were classified as "hate" against the minority, the stereotypes in the tweets often matched common stereotypes about the minority. Asians were blamed for the Covid pandemic. Blacks were seen as inferior and associated with crime. Jews were seen as powerful and held collectively responsible for the actions of the State of Israel. Some tweets denied the Holocaust. Hispanics/Latines were portrayed as being in the country illegally and as "invaders," in addition to stereotypical accusations of being lazy, stupid, or having too many children. Muslims, on the other hand, were often collectively blamed for terrorism and violence, though often in conversations about Muslims in India.
This dataset contains 5880 tweets that cover a wide range of topics common in conversations about Asians, Blacks, Jews, Latines, and Muslims. 357 tweets (6.1 %) are labeled as biased and 5523 (93.9 %) are labeled as not biased. 1365 tweets (23.2 %) are labeled as calling out or denouncing bias. 1180 out of 5880 tweets (20.1 %) contain the keyword "Asians," 590 were posted in 2020 and 590 in 2021. 39 tweets (3.3 %) are biased against Asian people. 370 tweets (31,4 %) call out bias against Asians. 1160 out of 5880 tweets (19.7%) contain the keyword "Blacks," 578 were posted in 2020 and 582 in 2021. 101 tweets (8.7 %) are biased against Black people. 334 tweets (28.8 %) call out bias against Blacks. 1189 out of 5880 tweets (20.2 %) contain the keyword "Jews," 592 were posted in 2020, 451 in 2021, and ––as mentioned above––146 tweets from 2022. 83 tweets (7 %) are biased against Jewish people. 220 tweets (18.5 %) call out bias against Jews. 1169 out of 5880 tweets (19.9 %) contain the keyword "Latinos," 584 were posted in 2020 and 585 in 2021. 29 tweets (2.5 %) are biased against Latines. 181 tweets (15.5 %) call out bias against Latines. 1182 out of 5880 tweets (20.1 %) contain the keyword "Muslims," 593 were posted in 2020 and 589 in 2021. 105 tweets (8.9 %) are biased against Muslims. 260 tweets (22 %) call out bias against Muslims.
The dataset is provided in a csv file format, with each row representing a single message, including replies, quotes, and retweets. The file contains the following columns:
'TweetID': Represents the tweet ID.
'Username': Represents the username who published the tweet (if it is a retweet, it will be the user who retweetet the original tweet.
'Text': Represents the full text of the tweet (not pre-processed).
'CreateDate': Represents the date the tweet was created.
'Biased': Represents the labeled by our annotators if the tweet is biased (1) or not (0).
'Calling_Out': Represents the label by our annotators if the tweet is calling out bias against minority groups (1) or not (0).
'Keyword': Represents the keyword that was used in the query. The keyword can be in the text, including mentioned names, or the username.
Data is published under the terms of the "Creative Commons Attribution 4.0 International" licence (https://creativecommons.org/licenses/by/4.0)
We are grateful for the technical collaboration with Indiana University's Observatory on Social Media (OSoMe). We thank all class participants for the annotations and contributions, including Kate Baba, Eleni Ballis, Garrett Banuelos, Savannah Benjamin, Luke Bianco, Zoe Bogan, Elisha S. Breton, Aidan Calderaro, Anaye Caldron, Olivia Cozzi, Daj Crisler, Jenna Eidson, Ella Fanning, Victoria Ford, Jess Gruettner, Ronan Hancock, Isabel Hawes, Brennan Hensler, Kyra Horton, Maxwell Idczak, Sanjana Iyer, Jacob Joffe, Katie Johnson, Allison Jones, Kassidy Keltner, Sophia Knoll, Jillian Kolesky, Emily Lowrey, Rachael Morara, Benjamin Nadolne, Rachel Neglia, Seungmin Oh, Kirsten Pecsenye, Sophia Perkovich, Joey Philpott, Katelin Ray, Kaleb Samuels, Chloe Sherman, Rachel Weber, Molly Winkeljohn, Ally Wolfgang, Rowan Wolke, Michael Wong, Jane Woods, Kaleb Woodworth, and Aurora Young. This work used Jetstream2 at Indiana University through allocation HUM200003 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the key Twitter user statistics that you need to know.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update May 2024: Fixed a data type issue with "id" column that prevented twitter ids from rendering correctly.
Recent progress in generative artificial intelligence (gen-AI) has enabled the generation of photo-realistic and artistically-inspiring photos at a single click, catering to millions of users online. To explore how people use gen-AI models such as DALLE and StableDiffusion, it is critical to understand the themes, contents, and variations present in the AI-generated photos. In this work, we introduce TWIGMA (TWItter Generative-ai images with MetadatA), a comprehensive dataset encompassing 800,000 gen-AI images collected from Jan 2021 to March 2023 on Twitter, with associated metadata (e.g., tweet text, creation date, number of likes).
Through a comparative analysis of TWIGMA with natural images and human artwork, we find that gen-AI images possess distinctive characteristics and exhibit, on average, lower variability when compared to their non-gen-AI counterparts. Additionally, we find that the similarity between a gen-AI image and human images (i) is correlated with the number of likes; and (ii) can be used to identify human images that served as inspiration for the gen-AI creations. Finally, we observe a longitudinal shift in the themes of AI-generated images on Twitter, with users increasingly sharing artistically sophisticated content such as intricate human portraits, whereas their interest in simple subjects such as natural scenes and animals has decreased. Our analyses and findings underscore the significance of TWIGMA as a unique data resource for studying AI-generated images.
Note that in accordance with the privacy and control policy of Twitter, NO raw content from Twitter is included in this dataset and users could and need to retrieve the original Twitter content used for analysis using the Twitter id. In addition, users who want to access Twitter data should consult and follow rules and regulations closely at the official Twitter developer policy at https://developer.twitter.com/en/developer-terms/policy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset for the article "A Predictive Method to Improve the Effectiveness of Twitter Communication in a Cultural Heritage Scenario".
Abstract:
Museums are embracing social technologies in the attempt to broaden their audience and to engage people. Although social communication seems an easy task, media managers know how hard it is to reach millions of people with a simple message. Indeed, millions of posts are competing every day to get visibility in terms of likes and shares and very little research focused on museums communication to identify best practices. In this paper, we focus on Twitter and we propose a novel method that exploits interpretable machine learning techniques to: (a) predict whether a tweet will likely be appreciated by Twitter users or not; (b) present simple suggestions that will help enhancing the message and increasing the probability of its success. Using a real-world dataset of around 40,000 tweets written by 23 world famous museums, we show that our proposed method allows identifying tweet features that are more likely to influence the tweet success.
Code to run a selection of experiments is available at https://github.com/rmartoglia/predict-twitter-ch
Dataset structure
The dataset contains the dataset used in the experiments of the above research paper. Only the extracted features for the museum tweet threads (and not the message full text) are provided and needed for the analyses.
We selected 23 well known world spread art museums and grouped them into five groups: G1 (museums with at least three million of followers); G2 (museums with more than one million of followers); G3 (museums with more than 400,000 followers); G4 (museums with more that 200,000 followers); G5 (Italian museums). From these museums, we analyzed ca. 40,000 tweets, with a number varying from 5k ca. to 11k ca. for each museum group, depending on the number of museums in each group.
Content features: these are the features that can be drawn form the content of the tweet itself. We further divide such features in the following two categories:
– Countable: these features have a value ranging into different intervals. We take into consideration: the number of hashtags (i.e., words preceded by #) in the tweet, the number of URLs (i.e., links to external resources), the number of images (e.g., photos and graphical emoticons), the number of mentions (i.e., twitter accounts preceded by @), the length of the tweet;
– On-Off : these features have binary values in {0, 1}. We observe whether the tweet has exclamation marks, question marks, person names, place names, organization names, other names. Moreover, we also take into consideration the tweet topic density: assuming that the involved topics correspond to the hashtags mentioned in the text, we define a tweet as dense of topics if the number of hashtags it contains is greater than a given threshold, set to 5. Finally, we observe the tweet sentiment that might be present (positive or negative) or not (neutral).
Context features: these features are not drawn form the content of the tweet itself and might give a larger picture of the context in which the tweet was sent. Namely, we take into consideration the part of the day in which the tweet was sent (morning, afternoon, evening and night respectively from 5:00am to 11:59am, from 12:00pm to 5:59pm, from 6:00pm to 10:59pm and from 11pm to 4:59am), and a boolean feature indicating whether the tweet is a retweet or not.
User features: these features are proper of the user that sent the tweet, and are the same for all the tweets of this user. Namely we consider the name of the museum and the number of followers of the user.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset comprises a set of Twitter accounts in Singapore that are used for social bot profiling research conducted by the Living Analytics Research Centre (LARC) at Singapore Management University (SMU). Here a bot is defined as a Twitter account that generates contents and/or interacts with other users automatically (at least according to human judgment). In this research, Twitter bots have been categorized into three major types:
Broadcast bot. This bot aims at disseminating information to general audience by providing, e.g., benign links to news, blogs or sites. Such bot is often managed by an organization or a group of people (e.g., bloggers). Consumption bot. The main purpose of this bot is to aggregate contents from various sources and/or provide update services (e.g., horoscope reading, weather update) for personal consumption or use. Spam bot. This type of bots posts malicious contents (e.g., to trick people by hijacking certain account or redirecting them to malicious sites), or promotes harmless but invalid/irrelevant contents aggressively.
This categorization is general enough to cater for new, emerging types of bot (e.g., chatbots can be viewed as a special type of broadcast bots). The dataset was collected from 1 January to 30 April 2014 via the Twitter REST and streaming APIs. Starting from popular seed users (i.e., users having many followers), their follow, retweet, and user mention links were crawled. The data collection proceeds by adding those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. Using this procedure, a total of 159,724 accounts have been collected. To identify bots, the first step is to check active accounts who tweeted at least 15 times within the month of April 2014. These accounts were then manually checked and labelled, of which 589 bots were found. As many more human users are expected in the Twitter population, the remaining accounts were randomly sampled and manually checked. With this, 1,024 human accounts were identified. In total, this results in 1,613 labelled accounts. Related Publication: R. J. Oentaryo, A. Murdopo, P. K. Prasetyo, and E.-P. Lim. (2016). On profiling bots in social media. Proceedings of the International Conference on Social Informatics (SocInfo’16), 92-109. Bellevue, WA. https://doi.org/10.1007/978-3-319-47880-7_6
As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
United States 45th President Donald Trump has used Twitter as no one else. He primarily ran his government from a twitter firehose. Twitter has officially banned his account on January 8th 2021 after a deadly riot at Capitol on January 6th 2021. Twitter cites its World Leaders on Twitter: Principles and Approach as a guide to adhere to for public leaders.
Trump tweets and policies have far reaching effects that one can realize or he would accept to realize himself. Since, twitter is suspended there is no public way to read his past tweets and analyze it for public policy outcome or link it with global issues.
Here we are presenting the complete treasure trove of President Trump's tweet, all 56,572 for the public, data scientists and researchers.
The dataset contains 56,572 tweets, tweet IDs, Tweet Date, How many liked and retweeted it.
I like to acknowledge Twitter and Trump's Tweet Archives on the Internet that have helped me create this dataset
I’d like to call the attention of my fellow Kagglers and Data Scientists to use Machine Learning and Data Sciences to help me explore these ideas:
• How many times Trump discussed a particular country in his tweets and if we can label the sentiments? (North Korea, India, Pakistan, Mexico?) • How many times Trump talks about immigrants and border wall? • How many times and ways he has insulted? • Can you find a link between his tweets and stock market prices? • How many times he has downplayed Corona/Covid? • How many times he has called the election fraud? • How many tweets about Hillary Clinton, Obama or Joe Biden? • Anything else you can find that surprises us?
Dataset Title: PPP and PTI Twitter Trend Analysis
Overview This dataset encompasses a collection of 1184 tweets from the Twitter trend "PPP and PTI," capturing a snapshot of public discourse and sentiment regarding Pakistan's prominent political entities: the Pakistan Peoples Party (PPP) and Pakistan Tehreek-e-Insaf (PTI). It provides a diverse range of perspectives and reactions from Twitter users, making it an invaluable resource for political analysts, data scientists, and researchers interested in political sentiment analysis, social media analytics, and digital humanities.
Dataset Description The dataset is structured into seven columns, each offering distinct insights into the tweets collected:
Potential Uses This dataset can serve a wide range of purposes, including but not limited to: 1. Sentiment analysis to gauge public opinion regarding PPP and PTI. 2. Temporal analysis to identify trends and shifts in public sentiment over time. 3. Network analysis to explore interactions and the spread of information among users. 4. Comparative analysis between the engagement and popularity of tweets related to PPP vs. PTI.
Methodology The tweets were collected using Selenium WebDriver, ensuring a comprehensive and unbiased selection of tweets related to the "PPP and PTI" trend. Care was taken to include tweets from various times of the day to capture a broad spectrum of user engagement and opinions.
Ethical Considerations All data was collected and presented in accordance with Twitter's data use policies and ethical guidelines for research.
Acknowledgments This dataset was created by Aqeel Khan, a student of BS Mathematics at Namal University Mianwali, with a keen interest in data science and machine learning. The dataset compilation was aimed at facilitating research and analysis in the domains of political science, social media analytics, and data science.
License This dataset is shared for educational and research purposes. Users of the dataset are encouraged to cite the source and adhere to Twitter's terms of service regarding the use of shared data.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.
Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Content People across India scrambled for life-saving oxygen supplies on Friday and patients lay dying outside hospitals as the capital recorded the equivalent of one death from COVID-19 every five minutes.
For the second day running, the country’s overnight infection total was higher than ever recorded anywhere in the world since the pandemic began last year, at 332,730.
India’s second wave has hit with such ferocity that hospitals are running out of oxygen, beds, and anti-viral drugs. Many patients have been turned away because there was no space for them, doctors in Delhi said.
Mass cremations have been taking place as the crematoriums have run out of space. Ambulance sirens sounded throughout the day in the deserted streets of the capital, one of India’s worst-hit cities, where a lockdown is in place to try and stem the transmission of the virus. source
Dataset The dataset consists of the tweets made with the #IndiaWantsOxygen hashtag covering the tweets from the past week. The dataset totally consists of 25,440 tweets and will be updated on a daily basis.
The description of the features is given below
No Columns Descriptions 1 user_name The name of the user, as they’ve defined it. 2 user_location The user-defined location for this account’s profile. 3 user_description The user-defined UTF-8 string describing their account. 4 user_created Time and date, when the account was created. 5 user_followers The number of followers an account currently has. 6 user_friends The number of friends an account currently has. 7 user_favourites The number of favorites an account currently has 8 user_verified When true, indicates that the user has a verified account 9 date UTC time and date when the Tweet was created 10 text The actual UTF-8 text of the Tweet 11 hashtags All the other hashtags posted in the tweet along with #IndiaWantsOxygen 12 source Utility used to post the Tweet, Tweets from the Twitter website have a source value - web 13 is_retweet Indicates whether this Tweet has been Retweeted by the authenticating user. Acknowledgements https://globalnews.ca/news/7785122/india-covid-19-hospitals-record/ Image courtesy: BBC and Reuters
Inspiration The past few days have been really depressing after seeing these incidents. These tweets are the voice of the indians requesting help and people all over the globe asking their own countries to support India by providing oxygen tanks.
And I strongly believe that this is not just some data, but the pure emotions of people and their call for help. And I hope we as data scientists could contribute on this front by providing valuable information and insights.
CC0
Original Data Source: #IndiaNeedsOxygen Tweets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We collected the data for our analysis by utilising the academic Twitter API (V2). The four-letter acronyms associated with the Myers-Briggs Type Indicator (MBTI) give people a short categorisation of their personality that is easily self-reported on social media in the form of a regular expression. As a result, people are much more likely to self-report their categorical MBTI rather than other personality types. The four letter MBTI acronyms are also unique to the Myers-Briggs questionnaire, meaning they can be easily queried using the Twitter API. This also means these personality types won't be confused with any other acronym or word, reducing the likelihood we incorrectly classify any users. When we initially explored Twitter, we found that some users self-reported their personality type in their biography and other users would self-report their personality types in their tweets. As a result, we formulated two methods for querying and labelling the Myers-Briggs personality type of accounts. We describe the two methods below:
Firstly, we used Tweepy's 'search_users' endpoint to obtain the set of users who currently self-report their MBTI in their username or biography. Due to the rate limits associated with this endpoint we were limited to obtaining no more than 1000 users for each unique search query. Secondly, we used the Twitter API's 'full_archive_search' endpoint to obtain the set of users who self-reported their Myers-Briggs personality type in a Tweet since Twitter's creation (March 26, 2006). We searched for users who tweeted any of the three regular expressions, followed by their personality type: 'I am...', 'I am a...' or 'I am an...'. Note that we only searched for self-reports in Tweets and excluded Retweets, Quotes and Replies in our query due to these having a much higher potential of incorrectly labelling an account. Furthermore, we were bound by rate limits of 300 requests per 15-minute window, however there were no hard bounds on the number of tweets or users we could obtain. As a result, we ran this query for each personality type until the search was exhausted.
Note that in both cases, the queries were not case-sensitive. In the attached dataset, we provide both the Twitter User IDs and the Myers-Briggs Personality Types associated with the 68,958 users obtained using the two methods discussed above. We provide this dataset prior to any preprocessing steps performed in our paper.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The cost of living is a scorching topic. This dataset is composed of tweets sent from August 20 to Sept 9 2022, with over 144k tweets. All tweets are in English and are from different countries. Below is a breakdown of columns and the data in them.
https://images.unsplash.com/photo-1553729459-efe14ef6055d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1770&q=80" alt="">