46 datasets found
  1. N

    United States Age Group Population Dataset: A complete breakdown of United...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  2. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  3. N

    Globe, AZ Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Globe, AZ Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66a9e537-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arizona, Globe
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.

    Key observations

    Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Globe population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Globe is shown in the following column.
    • Population (Female): The female population in the Globe is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Globe for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here

  4. Standard populations dataset

    • kaggle.com
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Matthias Kleine
    Description

    Do you know further standard populations?

    If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

    German "Federal Health Monitoring System" about 'standard populations':

    "Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

    Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

    Which standard population is used for comparison basically, does not matter. It is important, however, that

    1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
    2. the comparable rates refer to the same standard."

    Aim of this dataset

    The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

    Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

    • standard_populations_19_age_groups.csv
      • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
      • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
      • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

    Terms of use

    No restrictions are known to the author. Standard populations are published by different organisations for public usage.

  5. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  6. I

    India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female [Dataset]. https://www.ceicdata.com/en/india/health-statistics/in-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-female
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    India
    Description

    India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  7. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  8. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.

                  Instagram users
    
                  With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
    
                  Instagram features
    
                  One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
                  As of the second quarter of 2021, Snapchat had 293 million daily active users.
    
  9. Average Daily Screen Time for Children

    • kaggle.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AKshay (2025). Average Daily Screen Time for Children [Dataset]. https://www.kaggle.com/datasets/ak0212/average-daily-screen-time-for-children/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Kaggle
    Authors
    AKshay
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This datas real-world trends in children's screen time usage. It includes data on educational, recreational, and total screen time for children aged 5 to 15 years, with breakdowns by gender (Male, Female, Other/Prefer not to say) and day type (Weekday, Weekend). The dataset follows expected behavioral patterns:

    Screen time increases with age (~1.5 hours/day at age 5 to 6+ hours/day at age 15).

    Recreational screen time dominates, making up 65–80% of total screen time.

    Weekend screen time is 20–30% higher than weekdays, with a larger increase for teenagers.

    Slight gender-based variations in recreational screen time.

    The dataset contains natural variability, ensuring realism, and the sample size decreases slightly with age (e.g., 500 respondents at age 5, 300 at age 15).

    This dataset is ideal for data analysis, visualization, and machine learning experiments related to children's digital habits. 🚀

  10. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  11. A

    ‘Vehicle Miles Traveled During Covid-19 Lock-Downs ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Vehicle Miles Traveled During Covid-19 Lock-Downs ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-vehicle-miles-traveled-during-covid-19-lock-downs-636d/latest
    Explore at:
    Dataset updated
    Jan 4, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Vehicle Miles Traveled During Covid-19 Lock-Downs ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/vehicle-miles-travelede on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    **This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **

    Overview

    Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.

    This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.

    Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.

    This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.

    Findings

    • Nationally, data shows that vehicle travel in the US has doubled compared to the seven-day period ending April 13, which was the lowest VMT since the COVID-19 crisis began. In early December, travel reached a low not seen since May, with a small rise leading up to the Christmas holiday.
    • Average vehicle miles traveled continues to be below what would be expected without a pandemic - down 38% compared to January 2020. September 4 reported the largest single day estimate of vehicle miles traveled since March 14.
    • New Jersey, Michigan and New York are among the states with the largest relative uptick in travel at this point of the pandemic - they report almost two times the miles traveled compared to their lowest seven-day period. However, travel in New Jersey and New York is still much lower than expected without a pandemic. Other states such as New Mexico, Vermont and West Virginia have rebounded the least.

    About This Data

    The county level data is provided by StreetLight Data, Inc, a transportation analysis firm that measures travel patterns across the U.S.. The data is from their Vehicle Miles Traveled (VMT) Monitor which uses anonymized and aggregated data from smartphones and other GPS-enabled devices to provide county-by-county VMT metrics for more than 3,100 counties. The VMT Monitor provides an estimate of total vehicle miles travelled by residents of each county, each day since the COVID-19 crisis began (March 1, 2020), as well as a change from the baseline average daily VMT calculated for January 2020. Additional columns are calculations by AP.

    Included Data

    01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    Additional Data Queries

    * Filter for specific state - filters 02_vmt_state.csv daily data for specific state.

    * Filter counties by state - filters 03_vmt_county.csv daily data for counties in specific state.

    * Filter for specific county - filters 03_vmt_county.csv daily data for specific county.

    Interactive

    The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:

    This dataset was created by Angeliki Kastanis and contains around 0 samples along with Date At Low, Mean7 County Vmt At Low, technical information and other features such as: - County Name - County Fips - and more.

    How to use this dataset

    • Analyze State Name in relation to Baseline Jan Vmt
    • Study the influence of Date At Low on Mean7 County Vmt At Low
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Angeliki Kastanis

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  12. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  13. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  14. F

    Mandarin Call Center Data for Travel AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mandarin Call Center Data for Travel AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/travel-call-center-conversation-mandarin-china
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mandarin Chinese Call Center Speech Dataset for the Travel industry is purpose-built to power the next generation of voice AI applications for travel booking, customer support, and itinerary assistance. With over 30 hours of unscripted, real-world conversations, the dataset enables the development of highly accurate speech recognition and natural language understanding models tailored for Mandarin -speaking travelers.

    Created by FutureBeeAI, this dataset supports researchers, data scientists, and conversational AI teams in building voice technologies for airlines, travel portals, and hospitality platforms.

    Speech Data

    The dataset includes 30 hours of dual-channel audio recordings between native Mandarin Chinese speakers engaged in real travel-related customer service conversations. These audio files reflect a wide variety of topics, accents, and scenarios found across the travel and tourism industry.

    Participant Diversity:
    Speakers: 60 native Mandarin Chinese contributors from our verified pool.
    Regions: Covering multiple China provinces to capture accent and dialectal variation.
    Participant Profile: Balanced representation of age (18–70) and gender (60% male, 40% female).
    Recording Details:
    Conversation Nature: Naturally flowing, spontaneous customer-agent calls.
    Call Duration: Between 5 and 15 minutes per session.
    Audio Format: Stereo WAV, 16-bit depth, at 8kHz and 16kHz.
    Recording Environment: Captured in controlled, noise-free, echo-free settings.

    Topic Diversity

    Inbound and outbound conversations span a wide range of real-world travel support situations with varied outcomes (positive, neutral, negative).

    Inbound Calls:
    Booking Assistance
    Destination Information
    Flight Delays or Cancellations
    Support for Disabled Passengers
    Health and Safety Travel Inquiries
    Lost or Delayed Luggage, and more
    Outbound Calls:
    Promotional Travel Offers
    Customer Feedback Surveys
    Booking Confirmations
    Flight Rescheduling Alerts
    Visa Expiry Notifications, and others

    These scenarios help models understand and respond to diverse traveler needs in real-time.

    Transcription

    Each call is accompanied by manually curated, high-accuracy transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-Stamped Segments
    Non-speech Markers (e.g., pauses, coughs)
    High transcription accuracy by dual-layered transcription review ensures word error rate under 5%.

    Metadata

    Extensive metadata enriches each call and speaker for better filtering and AI training:

    Participant Metadata: ID, age, gender, region, accent, and dialect.
    Conversation Metadata: Topic, domain, call type, sentiment, and audio specs.

    Usage and Applications

    This dataset is ideal for a variety of AI use cases in the travel and tourism space:

    ASR Systems: Train Mandarin speech-to-text engines for travel platforms.
    <div style="margin-top:10px; margin-bottom: 10px;

  15. F

    Spanish (Spain) Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Spanish (Spain) Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-spanish-spain
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Spain
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Spanish speakers from our verified contributor community.
    Regions: Representing different provinces across Spain to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

  16. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +3more
    csv, docx, html, xlsx
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, xlsx, htmlAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  17. F

    Russian Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Russian Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-russian-russia
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Russian Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of Russian speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native Russian speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native Russian speakers from our contributor community.
    Regions: Diverse provinces across Russia to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

    <b style="font-weight:

  18. Facebook: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.

                  Facebook connects the world
    
                  Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
                  as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
    
  19. F

    Thai Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Thai Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-thai-thailand
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Thailand
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Thai Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of Thai speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native Thai speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native Thai speakers from our contributor community.
    Regions: Diverse provinces across Thailand to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

    <b style="font-weight:

  20. F

    Norwegian Call Center Data for Travel AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Norwegian Call Center Data for Travel AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/travel-call-center-conversation-norwegian-norway
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Norwegian Call Center Speech Dataset for the Travel industry is purpose-built to power the next generation of voice AI applications for travel booking, customer support, and itinerary assistance. With over 30 hours of unscripted, real-world conversations, the dataset enables the development of highly accurate speech recognition and natural language understanding models tailored for Norwegian -speaking travelers.

    Created by FutureBeeAI, this dataset supports researchers, data scientists, and conversational AI teams in building voice technologies for airlines, travel portals, and hospitality platforms.

    Speech Data

    The dataset includes 30 hours of dual-channel audio recordings between native Norwegian speakers engaged in real travel-related customer service conversations. These audio files reflect a wide variety of topics, accents, and scenarios found across the travel and tourism industry.

    Participant Diversity:
    Speakers: 60 native Norwegian contributors from our verified pool.
    Regions: Covering multiple Norway provinces to capture accent and dialectal variation.
    Participant Profile: Balanced representation of age (18–70) and gender (60% male, 40% female).
    Recording Details:
    Conversation Nature: Naturally flowing, spontaneous customer-agent calls.
    Call Duration: Between 5 and 15 minutes per session.
    Audio Format: Stereo WAV, 16-bit depth, at 8kHz and 16kHz.
    Recording Environment: Captured in controlled, noise-free, echo-free settings.

    Topic Diversity

    Inbound and outbound conversations span a wide range of real-world travel support situations with varied outcomes (positive, neutral, negative).

    Inbound Calls:
    Booking Assistance
    Destination Information
    Flight Delays or Cancellations
    Support for Disabled Passengers
    Health and Safety Travel Inquiries
    Lost or Delayed Luggage, and more
    Outbound Calls:
    Promotional Travel Offers
    Customer Feedback Surveys
    Booking Confirmations
    Flight Rescheduling Alerts
    Visa Expiry Notifications, and others

    These scenarios help models understand and respond to diverse traveler needs in real-time.

    Transcription

    Each call is accompanied by manually curated, high-accuracy transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-Stamped Segments
    Non-speech Markers (e.g., pauses, coughs)
    High transcription accuracy by dual-layered transcription review ensures word error rate under 5%.

    Metadata

    Extensive metadata enriches each call and speaker for better filtering and AI training:

    Participant Metadata: ID, age, gender, region, accent, and dialect.
    Conversation Metadata: Topic, domain, call type, sentiment, and audio specs.

    Usage and Applications

    This dataset is ideal for a variety of AI use cases in the travel and tourism space:

    ASR Systems: Train Norwegian speech-to-text engines for travel platforms.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/

United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups

Explore at:
json, csvAvailable download formats
Dataset updated
Sep 16, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

Key observations

The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group in consideration
  • Population: The population for the specific age group in the United States is shown in this column.
  • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu