Facebook
TwitterAutomobile data holds immense importance as it offers insights into the functioning and efficiency of the automotive industry. It provides valuable information about car models, specifications, sales trends, consumer demographics, and preferences, which car manufacturers and dealerships can leverage to optimize their operations and enhance customer experiences. By analyzing data on vehicle reliability, fuel efficiency, safety ratings, and resale values, the automotive industry can identify trends and implement strategies to produce more reliable and environmentally friendly vehicles, improve safety standards, and enhance the overall value of cars for consumers. Moreover, regulatory bodies and policymakers rely on this data to enforce regulations, set emissions standards, and make informed decisions regarding automotive policies and environmental impacts. Researchers and analysts use car purchase data to study market trends, assess the environmental impact of various vehicle types, and develop strategies for sustainable growth within the industry. In essence, car purchase data serves as a foundation for informed decision-making, operational efficiency, and the overall advancement of the automotive sector.
This dataset comprises diverse parameters relating to car purchases and ownership on a global scale. The dataset prominently incorporates fields such as 'First Name', 'Last Name', 'Country', 'Car Brand', 'Car Model', 'Car Color', 'Year of Manufacture', and 'Credit Card Type'. These columns collectively provide comprehensive insights into customer demographics, vehicle details, and payment information. Researchers and industry experts can leverage this dataset to analyze trends in car purchasing behavior, optimize the customer car-buying experience, evaluate the popularity of car brands and models, and understand payment preferences within the automotive industry.
https://i.imgur.com/olZpXsT.png" alt="">
The dataset provided here is a simulated example and was generated using the online platform found at Mockaroo. This web-based tool offers a service that enables the creation of customizable mock datasets that closely resemble real data. It is primarily intended for use by developers, testers, and data experts who require sample data for a range of uses, including testing databases, filling applications with demonstration data, and crafting lifelike illustrations for presentations and tutorials. To explore further details, you can visit their website.
Cover Photo by: Freepik
Thumbnail by: Car icons created by Freepik - Flaticon
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is designed for the detection of persons and cars in surveillance camera footage. It can be utilized for various useful applications, including:
This dataset is based on images collected from various sources, including:
https://universe.roboflow.com/radoslaw-kawczak/virat-ve02s
https://universe.roboflow.com/seminar-object-detection/cars-o1ljf
With this dataset, you can train and develop machine learning models capable of accurately detecting persons and cars, thus empowering surveillance and security systems with advanced object recognition capabilities.
Facebook
TwitterIt is a site that people can sell their own cars. There are around 150000 cars at all times. I scraped only around 50000 of them. Arabam.com
| Turkish Colors | English Equivalents |
|---|---|
| Kırmızı | Red |
| Beyaz | White |
| Mavi | Blue |
| Lacivert | Navy Blue |
| Bej | Beige |
| Gri | Grey |
| Gümüş | Silver |
| Yeşil | Green |
| Siyah | Black |
There are prices of cars as Turkish Lira. If you want to exchange to dollar, you can use a 1/7.4 ratio.
I used Excel VBA while I was scraping.
I had been thinking that why don't people use statistical tools while they buy something then I decided to scrap the prices of cars. Nowadays, the prices of cars increase relentlessly because of COVID 19. People do not want to use public transport and the owners of cars who know that, want to win much more money. At least, if people take account in which the car's price is so high than the mean or median, they aren't be fooled while they bargain.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
People And Cars is a dataset for object detection tasks - it contains Cars Lpr People annotations for 854 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterData files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
The Department for Transport is committed to continuously improving the quality and transparency of our outputs, in line with the Code of Practice for Statistics. In line with this, we have recently concluded a planned review of the processes and methodologies used in the production of Vehicle licensing statistics data. The review sought to seek out and introduce further improvements and efficiencies in the coding technologies we use to produce our data and as part of that, we have identified several historical errors across the published data tables affecting different historical periods. These errors are the result of mistakes in past production processes that we have now identified, corrected and taken steps to eliminate going forward.
Most of the revisions to our published figures are small, typically changing values by less than 1% to 3%. The key revisions are:
Licensed Vehicles (2014 Q3 to 2016 Q3)
We found that some unlicensed vehicles during this period were mistakenly counted as licensed. This caused a slight overstatement, about 0.54% on average, in the number of licensed vehicles during this period.
3.5 - 4.25 tonnes Zero Emission Vehicles (ZEVs) Classification
Since 2023, ZEVs weighing between 3.5 and 4.25 tonnes have been classified as light goods vehicles (LGVs) instead of heavy goods vehicles (HGVs). We have now applied this change to earlier data and corrected an error in table VEH0150. As a result, the number of newly registered HGVs has been reduced by:
3.1% in 2024
2.3% in 2023
1.4% in 2022
Table VEH0156 (2018 to 2023)
Table VEH0156, which reports average CO₂ emissions for newly registered vehicles, has been updated for the years 2018 to 2023. Most changes are minor (under 3%), but the e-NEDC measure saw a larger correction, up to 15.8%, due to a calculation error. Other measures (WLTP and Reported) were less notable, except for April 2020 when COVID-19 led to very few new registrations which led to greater volatility in the resultant percentages.
Neither these specific revisions, nor any of the others introduced, have had a material impact on the statistics overall, the direction of trends nor the key messages that they previously conveyed.
Specific details of each revision made has been included in the relevant data table notes to ensure transparency and clarity. Users are advised to review these notes as part of their regular use of the data to ensure their analysis accounts for these changes accordingly.
If you have questions regarding any of these changes, please contact the Vehicle statistics team.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/68ecf5acf159f887526bbd7c/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 99.7 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/68ecf5abf159f887526bbd7b/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 23.8 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/68ecf5ac2adc28a81b4acfc8/veh0105.ods">Licensed vehicles at
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average weekly household expenditure on goods and services in the UK. Data are shown by region, age, income (including equivalised) group (deciles and quintiles), economic status, socio-economic class, housing tenure, output area classification, urban and rural areas (Great Britain only), place of purchase and household composition.
Facebook
TwitterThis Mikrozensus special survey consists of two parts of the traffic statistics: motor vehicles and driving licenses The first part is a repetition of the Mikrozensus special survey from September 1971 (Mikrozensus MZ7103) on motor vehicles and their road performance. The results of this survey were the basis for studies and measure in the fields of traffic policy, road safety and the general transport. By repeating this special survey, new data for these fields is collected. Moreover, changes due to the strong increase in the number of vehicles are are evaluated. More attention, than in the study from 1971, is also given to the energy consumption resulting from the performance of the vehicle. The questions are only on certain types of vehicles which are of special interest due to their road performance (passenger cars, estate cars, motorcycles, mopeds). Preliminary, important vehicle data and personal data of its owner are are collected. Then the questions are on the mileage at the time the vehicle was bought and at the time of the survey, as well as on the last working day’s and last weekend’s mileage. Owner’s of passenger- or estate cars are also asked how many people usually drive the car (as driver or passenger) from Monday to Friday as well as on the weekends and for what what purpose the car is mainly used. Up until now, statistics on driving licenses have only been conducted in some states on varying form (and therefore not really comparable). The results of this survey should provide information for the whole federal territory on the number of people with driving licenses, the data of the acquiring of the licence and the groups these licenses refer to.
Facebook
TwitterThis data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains over 7000+ true value cars data across all major tier 1 and tier 2 cities in India which is ready to accept a different owner. The information includes car manufacturer, model, fuel type, year of manufacture to mention a few. Are you ready to showcase your skills and build a model which can predict the true value of an used car? Let's get started!
If you find this dataset useful kindly upvote as a gesture of encouragement. This motivates me to bring in more knowledge to the community.
I've recently started dwelling into machine learning, and web scrapping and I wanted to implement it in real time to understand how these technologies work! To my amazement, Kaggle is a one-stop solution where I can improve my skills. So, here I'm presenting the curated dataset so that anyone who is interested can work on, publish their kernels and compete.
The dataset is curated thoughtfully after scrapping the information from https://www.cars24.com/. This data contains car information only and anything which is not related to the price prediction is removed.
Note: This dataset is created for educational purposes only. Any suggestions on improvement in the quality of the dataset is highly appreciated!
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsCar availabilityThis dataset provides Census 2021 estimates on the number of cars or vans available to members of households for England and Wales. The estimates are as at Census Day, 21 March 2021.Definition: The number of cars or vans owned or available for use by household members.Vehicles included:pick-ups, camper vans and motor homesvehicles that are temporarily not working vehicles that have failed their MOTvehicles owned or used by a lodgercompany cars or vans if they're available for private useVehicles not included:motorbikes, trikes, quad bikes or mobility scootersvehicles that have a Statutory Off Road Notification (SORN)vehicles owned or used only by a visitor vehicles that are kept at another address or not easily accessedThe number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.Households with 10 to 20 cars or vans are counted as having only 10.Households with more than 20 cars or vans were treated as invalid and a value imputed.This dataset includes data for Leicester city and England overall.
Facebook
TwitterThis dataset contains information about vehicles (or units as they are identified in crash reports) involved in a traffic crash. This dataset should be used in conjunction with the traffic Crash and People dataset available in the portal. “Vehicle” information includes motor vehicle and non-motor vehicle modes of transportation, such as bicycles and pedestrians. Each mode of transportation involved in a crash is a “unit” and get one entry here. Each vehicle, each pedestrian, each motorcyclist, and each bicyclist is considered an independent unit that can have a trajectory separate from the other units. However, people inside a vehicle including the driver do not have a trajectory separate from the vehicle in which they are travelling and hence only the vehicle they are travelling in get any entry here. This type of identification of “units” is needed to determine how each movement affected the crash. Data for occupants who do not make up an independent unit, typically drivers and passengers, are available in the People table. Many of the fields are coded to denote the type and location of damage on the vehicle. Vehicle information can be linked back to Crash data using the “CRASH_RECORD_ID” field. Since this dataset is a combination of vehicles, pedestrians, and pedal cyclists not all columns are applicable to each record. Look at the Unit Type field to determine what additional data may be available for that record. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester MSOAs and compare this with Leicester overall statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsCar availabilityThis dataset provides Census 2021 estimates on the number of cars or vans available to members of households for England and Wales. The estimates are as at Census Day, 21 March 2021.Definition: The number of cars or vans owned or available for use by household members.Vehicles included:pick-ups, camper vans and motor homesvehicles that are temporarily not working vehicles that have failed their MOTvehicles owned or used by a lodgercompany cars or vans if they're available for private useVehicles not included:motorbikes, trikes, quad bikes or mobility scootersvehicles that have a Statutory Off Road Notification (SORN)vehicles owned or used only by a visitor vehicles that are kept at another address or not easily accessedThe number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.Households with 10 to 20 cars or vans are counted as having only 10.Households with more than 20 cars or vans were treated as invalid and a value imputed.This dataset includes data for Leicester city MSOAs.
Facebook
TwitterThe car_price.csv file contains a dataset of various car-models.
The dataset contains 205 rows and 26 columns(features) of which 25 are independent features. Below shows a detailed information of feature names with its labels and datatypes.
It is a regression problem where with the various features we are expected to predict the price of a car.
The dataset doesn't contain any null values.
Independent features:
symboling 6 int64 fueltype 2 object aspiration. 2 object doornumber. 2 object carbody 5 object drivewheel 3 object enginelocation 2 object wheelbase 53 float64 carlength 75 float64 carwidth 44 float64 carheight 49 float64 curbweight 171 int64 enginetype 7 object cylindernumber 7 object enginesize 44 int64 fuelsystem 8 object boreratio 38 float64 stroke 37 float64 compressionratio 32 float64 horsepower 59 int64 peakrpm 23 int64 citympg 29 int64 highwaympg 30 int64
**Target/Dependent variable: ** For the dataset we have price as our dependent feature with its datatype float64, hence using Regression Models we are expected to predict the value of price
price 189 float64
Facebook
TwitterTotal vehicle registration counts per month by county
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US English Language In-car Speech Dataset, a comprehensive collection of audio recordings designed to facilitate the development of speech recognition models specifically tailored for in-car environments. This dataset aims to support research and innovation in automotive speech technology, enabling seamless and robust voice interactions within vehicles for drivers and co-passengers.
This dataset comprises over 5,000 high-quality audio recordings collected from various in-car environments. These recordings include scripted wake words and command-type prompts.
Participant Diversity:
- Speakers: 50+ native English speakers from the FutureBeeAI Community.
- Regions: Ensures a balanced representation of United States of America1 accents, dialects, and demographics.
- Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.
Recording Nature: Scripted wake word and command type of audio recordings.
- Duration: Average duration of 5 to 20 seconds per audio recording.
- Formats: WAV format with mono channels, a bit depth of 16 bits. The dataset contains different data at 16kHz and 48kHz.
Apart from participant diversity, the dataset is diverse in terms of different wake words, voice commands, and recording environments.
Different Automobile Related Wake Words: Hey Mercedes, Hey BMW, Hey Porsche, Hey Volvo, Hey Audi, Hi Genesis, Hey Mini, Hey Toyota, Ok Ford, Hey Hyundai, Ok Honda, Hello Kia, Hey Dodge.
Different Cars: Data collection was carried out in different types and models of cars.
Different Types of Voice Commands:
- Navigational Voice Commands
- Mobile Control Voice Commands
- Car Control Voice Commands
- Multimedia & Entertainment Commands
- General, Question Answer, Search Commands
Recording Time: Participants recorded the given prompts at various times to make the dataset more diverse.
- Morning
- Afternoon
- Evening
Recording Environment: Various recording environments were captured to acquire more realistic data and to make the dataset inclusive of various types of noises. Some of the environment variables are as follows:
- Noise Level: Silent, Low Noise, Moderate Noise, High Noise
- Parking Location: Indoor, Outdoor
- Car Windows: Open, Closed
- Car AC: On, Off
- Car Engine: On, Off
- Car Movement: Stationary, Moving
The dataset provides comprehensive metadata for each audio recording and participant:
Participant Metadata: Unique identifier, age, gender, country, state, district, accent, and dialect.
Other Metadata: Recording transcript, recording environment, device details, sample rate, bit depth, file format, recording time.
This metadata is a powerful tool for understanding and characterizing the data, enabling informed decision-making in the development of English voice assistant speech recognition models.
This US English In-car audio dataset is created by FutureBeeAI and is available for commercial use.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Wheelchair People Cars is a dataset for object detection tasks - it contains Wheelchair People Cars annotations for 3,190 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterThis dataset contains the file of vehicle, snowmobile and boat registrations in NYS. Registrations expired more than 2 years are excluded. Records that have a scofflaw, revocation and/or suspension are included with indicators specifying those kinds of records.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Traffic_signs, People, Cars is a dataset for object detection tasks - it contains Traffic_signs People Cars annotations for 2,248 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The data set contains registered vehicle population count by various criteria such as vehicle class, vehicle status, vechicle make, vehicle model, vehicle year, plate class, plate declaration, county, weight related class and other vehicle decriptors.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Car Registrations in Madagascar increased to 1434 Units in September from 1415 Units in August of 2022. This dataset provides - Madagascar Car Registrations - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAutomobile data holds immense importance as it offers insights into the functioning and efficiency of the automotive industry. It provides valuable information about car models, specifications, sales trends, consumer demographics, and preferences, which car manufacturers and dealerships can leverage to optimize their operations and enhance customer experiences. By analyzing data on vehicle reliability, fuel efficiency, safety ratings, and resale values, the automotive industry can identify trends and implement strategies to produce more reliable and environmentally friendly vehicles, improve safety standards, and enhance the overall value of cars for consumers. Moreover, regulatory bodies and policymakers rely on this data to enforce regulations, set emissions standards, and make informed decisions regarding automotive policies and environmental impacts. Researchers and analysts use car purchase data to study market trends, assess the environmental impact of various vehicle types, and develop strategies for sustainable growth within the industry. In essence, car purchase data serves as a foundation for informed decision-making, operational efficiency, and the overall advancement of the automotive sector.
This dataset comprises diverse parameters relating to car purchases and ownership on a global scale. The dataset prominently incorporates fields such as 'First Name', 'Last Name', 'Country', 'Car Brand', 'Car Model', 'Car Color', 'Year of Manufacture', and 'Credit Card Type'. These columns collectively provide comprehensive insights into customer demographics, vehicle details, and payment information. Researchers and industry experts can leverage this dataset to analyze trends in car purchasing behavior, optimize the customer car-buying experience, evaluate the popularity of car brands and models, and understand payment preferences within the automotive industry.
https://i.imgur.com/olZpXsT.png" alt="">
The dataset provided here is a simulated example and was generated using the online platform found at Mockaroo. This web-based tool offers a service that enables the creation of customizable mock datasets that closely resemble real data. It is primarily intended for use by developers, testers, and data experts who require sample data for a range of uses, including testing databases, filling applications with demonstration data, and crafting lifelike illustrations for presentations and tutorials. To explore further details, you can visit their website.
Cover Photo by: Freepik
Thumbnail by: Car icons created by Freepik - Flaticon