https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13364933%2F23694fae55e2e76299358693ba6f32b9%2Flv-share.jpg?generation=1684843825246772&alt=media" alt="">
➡️ There are total 3 datasets containing valuable information.
➡️ Understand people's fame and behavior's on a dating app platform.
| Column Name | Description |
|---------------------|------------------------------|
| Age | The age of the user. |
| Number of Users | The total number of users. |
| Percent Want Chats | Percentage of users who want chats. |
| Percent Want Friends| Percentage of users who want friendships. |
| Percent Want Dates | Percentage of users who want romantic dates. |
| Mean Kisses Received| Average number of kisses received by users. |
| Mean Visits Received| Average number of profile visits received by users. |
| Mean Followers | Average number of followers for each user. |
| Mean Languages Known| Average number of languages known by users. |
| Total Want Chats | Total count of users interested in chats. |
| Total Want Friends | Total count of users looking for friendships. |
| Total Want Dates | Total count of users seeking romantic dates. |
| Total Kisses Received| Overall count of kisses received by users. |
| Total Visits Received| Overall count of profile visits received by users. |
| Total Followers | Overall count of followers for all users. |
| Total Languages Spoken| Total count of languages spoken by all users. |
When Dating apps like Tinder were becoming viral, people wanted to have the best profile in order to get more matches and more potential encounters. Unlike other previous dating platforms, those new ones emphasized on the mutuality of attraction before allowing any two people to get in touch and chat. This made it all the more important to create the best profile in order to get the best first impression.
Parallel to that, we Humans have always been in awe before charismatic and inspiring people. The more charismatic people tend to be followed and listened to by more people. Through their metrics such as the number of friends/followers, social networks give some ways of "measuring" the potential charisma of some people.
In regard to all that, one can then think:
what makes a great user profile ? how to make the best first impression in order to get more matches (and ultimately find love, or new friendships) ? what makes a person charismatic ? how do charismatic people present themselves ? In order to try and understand those different social questions, I decided to create a dataset of user profile informations using the social network Lovoo when it came out. By using different methodologies, I was able to gather user profile data, as well as some usually unavailable metrics (such as the number of profile visits).
The dataset contains user profile infos of users of the website Lovoo.
The dataset was gathered during spring 2015 (april, may). At that time, Lovoo was expanding in european countries (among others), while Tinder was trending both in America and in Europe. At that time the iOS version of the Lovoo app was in version 3.
Accessory image data The dataset references pictures (field pictureId) of user profiles. These pictures are also available for a fraction of users but have not been uploaded and should be asked separately.
The idea when gathering the profile pictures was to determine whether some correlations could be identified between a profile picture and the reputation or success of a given profile. Since first impression matters, a sound hypothesis to make is that the profile picture might have a great influence on the number of profile visits, matches and so on. Do not forget that only a fraction of a user's profile is seen when browsing through a list of users.
https://s1.dmcdn.net/v/BnWkG1M7WuJDq2PKP/x480
Details about collection methodology In order to gather the data, I developed a set of tools that would save the data while browsing through profiles and doing searches. Because of this approach (and the constraints that forced me to develop this approach) I could only gather user profiles that were recommended by Lovoo's algorithm for 2 profiles I created for this purpose occasion (male, open to friends & chats & dates). That is why there are only female users in the dataset. Another work could be done to fetch similar data for both genders or other age ranges.
Regarding the number of user profiles It turned out that the recommendation algorithm always seemed to output the same set of user profiles. This meant Lovoo's algorithm was probably heavily relying on settings like location (to recommend more people nearby than people in different places or countries) and maybe cookies. This diminished the number of different user profiles that would be pr...
This dataset contains user reviews and comments from the Bumble dating application on the Google Play Store. Bumble is an online dating app where, in heterosexual matches, female users typically initiate the first contact. Beyond romantic connections, Bumble also facilitates finding friends through "BFF mode" and business networking via "Bumble Bizz". This dataset is valuable for understanding user experiences and sentiment towards the app.
The dataset is typically provided as a data file, often in CSV format. It appears to contain a substantial number of records, with reviewId
having 168,651 unique values. The data quality is rated as 5 out of 5, and the version of this dataset is 1.0.
This dataset is ideal for: * Natural Language Processing (NLP) tasks, such as sentiment analysis of user comments. * Market research to gain insights into user satisfaction and preferences regarding dating apps. * Analysing app performance based on user ratings and feedback. * Studying trends in social networks and popular culture related to online dating. * Identifying common user issues or popular features within the Bumble app.
The dataset is global in its geographic scope. The reviews span a time period from 29 November 2015 to 28 June 2025. It primarily covers the experiences of Google Play Store users of the Bumble app. As of June 2016, 46.2% of Bumble's users were female.
CC-BY
Original Data Source: Bumble Dating App - Google Play Store Review
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Leveraging a massive dataset of over 421 million potential matches between single users on a leading mobile dating application, we were able to identify numerous characteristics of effective matching. Effective matching is defined as the exchange of contact information with the likely intent to meet in person. The characteristics of effective match include alignment of psychological traits (i.e., extroversion), physical traits (i.e., height), personal choices (i.e., desiring the same relationship type), and shared experiences. For nearly all characteristics, the more similar the individuals were, the higher the likelihood was of them finding each other desirable and opting to meet in person. The only exception was introversion, where introverts rarely had an effective match with other introverts. When investigating the preliminary stages of the choice process we looked at the consistency between the choice of men/women, the time it took users to make these binary choices, and the tendency of yes/no decisions. We used a biologically inspired choice model to estimate the decision process and could predict the selection and response time with nearly 60% accuracy. Given that people make their initial selection in no more than 11 s, and ultimately prefer a partner who shares numerous attributes with them, we suggest that users are less selective in their early preferences and gradually, during their conversation, converge onto clusters that share a high degree of similarity in characteristics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This zine was created as part of my Design Justice module coursework on my Human-Computer Interaction (HCI) Master’s programme. There are two files: a PDF for viewing online and an A5 print-ready PDF of the zine.It explores the harms embedded in dating app design through a fictional court case that puts dating apps on trial. From algorithmic bias to insufficient safety measures, the zine critically examines how these platforms have prioritised profit over people.It's not you, it's them.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13364933%2F23694fae55e2e76299358693ba6f32b9%2Flv-share.jpg?generation=1684843825246772&alt=media" alt="">
➡️ There are total 3 datasets containing valuable information.
➡️ Understand people's fame and behavior's on a dating app platform.
| Column Name | Description |
|---------------------|------------------------------|
| Age | The age of the user. |
| Number of Users | The total number of users. |
| Percent Want Chats | Percentage of users who want chats. |
| Percent Want Friends| Percentage of users who want friendships. |
| Percent Want Dates | Percentage of users who want romantic dates. |
| Mean Kisses Received| Average number of kisses received by users. |
| Mean Visits Received| Average number of profile visits received by users. |
| Mean Followers | Average number of followers for each user. |
| Mean Languages Known| Average number of languages known by users. |
| Total Want Chats | Total count of users interested in chats. |
| Total Want Friends | Total count of users looking for friendships. |
| Total Want Dates | Total count of users seeking romantic dates. |
| Total Kisses Received| Overall count of kisses received by users. |
| Total Visits Received| Overall count of profile visits received by users. |
| Total Followers | Overall count of followers for all users. |
| Total Languages Spoken| Total count of languages spoken by all users. |
When Dating apps like Tinder were becoming viral, people wanted to have the best profile in order to get more matches and more potential encounters. Unlike other previous dating platforms, those new ones emphasized on the mutuality of attraction before allowing any two people to get in touch and chat. This made it all the more important to create the best profile in order to get the best first impression.
Parallel to that, we Humans have always been in awe before charismatic and inspiring people. The more charismatic people tend to be followed and listened to by more people. Through their metrics such as the number of friends/followers, social networks give some ways of "measuring" the potential charisma of some people.
In regard to all that, one can then think:
what makes a great user profile ? how to make the best first impression in order to get more matches (and ultimately find love, or new friendships) ? what makes a person charismatic ? how do charismatic people present themselves ? In order to try and understand those different social questions, I decided to create a dataset of user profile informations using the social network Lovoo when it came out. By using different methodologies, I was able to gather user profile data, as well as some usually unavailable metrics (such as the number of profile visits).
The dataset contains user profile infos of users of the website Lovoo.
The dataset was gathered during spring 2015 (april, may). At that time, Lovoo was expanding in european countries (among others), while Tinder was trending both in America and in Europe. At that time the iOS version of the Lovoo app was in version 3.
Accessory image data The dataset references pictures (field pictureId) of user profiles. These pictures are also available for a fraction of users but have not been uploaded and should be asked separately.
The idea when gathering the profile pictures was to determine whether some correlations could be identified between a profile picture and the reputation or success of a given profile. Since first impression matters, a sound hypothesis to make is that the profile picture might have a great influence on the number of profile visits, matches and so on. Do not forget that only a fraction of a user's profile is seen when browsing through a list of users.
https://s1.dmcdn.net/v/BnWkG1M7WuJDq2PKP/x480
Details about collection methodology In order to gather the data, I developed a set of tools that would save the data while browsing through profiles and doing searches. Because of this approach (and the constraints that forced me to develop this approach) I could only gather user profiles that were recommended by Lovoo's algorithm for 2 profiles I created for this purpose occasion (male, open to friends & chats & dates). That is why there are only female users in the dataset. Another work could be done to fetch similar data for both genders or other age ranges.
Regarding the number of user profiles It turned out that the recommendation algorithm always seemed to output the same set of user profiles. This meant Lovoo's algorithm was probably heavily relying on settings like location (to recommend more people nearby than people in different places or countries) and maybe cookies. This diminished the number of different user profiles that would be pr...