https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset investigates the relationship between Wordle answers and Google search spikes, particularly for uncommon words. It spans from June 21, 2021 to June 24, 2025.
It includes daily data for each Wordle answer, its search trend on that day, and frequency-based commonality indicators.
Each Wordle answer causes a spike in search volume on the day it appears — more so if the word is rare.
This dataset supports exploration of:
Column | Description |
---|---|
date | Date of the Wordle puzzle |
word | Correct 5-letter Wordle answer |
game | Wordle game number |
wordfreq_commonality | Normalized frequency score using Python’s wordfreq library |
subtlex_commonality | Normalized frequency score using SUBTLEX-US dataset |
trend_day_global | Google search interest on the day (global, all categories) |
trend_avg_200_global | 200-day average search interest (global, all categories) |
trend_day_language | Search interest on Wordle day (Language Resources category) |
trend_avg_200_language | 200-day average search interest (Language Resources category) |
Notes: - All trend values are relative (0–100 scale, per Google Trends)
wordfreq
Python librarypytrends
Can find analysis done using this data in the blog post
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Approximately 10 people are shot on an average day in Chicago.
http://www.chicagotribune.com/news/data/ct-shooting-victims-map-charts-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-chicago-homicides-data-tracker-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-homicide-victims-2017-htmlstory.html
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. This data includes unverified reports supplied to the Police Department. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time.
Update Frequency: Daily
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:chicago_crime
https://cloud.google.com/bigquery/public-data/chicago-crime-data
Dataset Source: City of Chicago
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source —https://data.cityofchicago.org — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Ferdinand Stohr from Unplash.
What categories of crime exhibited the greatest year-over-year increase between 2015 and 2016?
Which month generally has the greatest number of motor vehicle thefts?
How does temperature affect the incident rate of violent crime (assault or battery)?
https://cloud.google.com/bigquery/images/chicago-scatter.png" alt="">
https://cloud.google.com/bigquery/images/chicago-scatter.png
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This folder contains data behind the story Every Guest Jon Stewart Ever Had On ‘The Daily Show’.
Header | Definition |
---|---|
YEAR | The year the episode aired |
GoogleKnowlege_Occupation | Their occupation or office, according to Google's Knowledge Graph or, if they're not in there, how Stewart introduced them on the program. |
Show | Air date of episode. Not unique, as some shows had more than one guest |
Group | A larger group designation for the occupation. For instance, us senators, us presidents, and former presidents are all under "politicians" |
Raw_Guest_List | The person or list of people who appeared on the show, according to Wikipedia. The GoogleKnowlege_Occupation only refers to one of them in a given row. |
Source: Google Knowlege Graph, The Daily Show clip library, Wikipedia.
This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!
This dataset is maintained using GitHub's API and Kaggle's API.
This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.
Cover photo by Oscar Nord on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The core components of this dataset are the user reviews and ratings of the Twitch App, updated every single day. Additional details such as the relevance of the reviews and the dates on which they were posted are also incorporated into the dataset.
As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.
Facebook connects the world
Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries.
Over 9000 stations' data are typically available.
The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches)
Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME]
. Fork this kernel to get started to learn how to safely manage analyzing large BigQuery datasets.
This public dataset was created by the National Oceanic and Atmospheric Administration (NOAA) and includes global data obtained from the USAF Climatology Center. This dataset covers GSOD data between 1929 and present, collected from over 9000 stations. Dataset Source: NOAA
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Photo by Allan Nygren on Unsplash
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The COVID Tracking Project was a volunteer organization launched from The Atlantic and dedicated to collecting and publishing the data required to understand the COVID-19 outbreak in the United States. Our dataset was in use by national and local news organizations across the United States and by research projects and agencies worldwide.
Every day, we collected data on COVID-19 testing and patient outcomes from all 50 states, 5 territories, and the District of Columbia by visiting official public health websites for those jurisdictions and entering reported values in a spreadsheet. The files in this dataset represent the entirety of our COVID-19 testing and outcomes data collection from March 7, 2020 to March 7, 2021. This dataset includes official values reported by each state on each day of antigen, antibody, and PCR test result totals; the total number of probable and confirmed cases of COVID-19; the number of people currently hospitalized, in intensive care, and on a ventilator; the total number of confirmed and probable COVID-19 deaths; and more.
Methods This dataset was compiled by about 300 volunteers with The COVID Tracking Project from official sources of state-level COVID-19 data such as websites and press conferences. Every day, a team of about a dozen available volunteers visited these official sources and recorded the publicly reported values in a shared Google Sheet, which was used as a data source to publish the full dataset each day between about 5:30pm and 7pm Eastern time. All our data came from state and territory public health authorities or official statements from state officials. We did not automatically scrape data or attempt to offer a live feed. Our data was gathered and double-checked by humans, and we emphasized accuracy and context over speed. Some data was corrected or backfilled from structured data provided by public health authorities. Additional information about our methods can be found in a series of posts at http://covidtracking.com/analysis-updates.
We offer thanks and heartfelt gratitude for the labor and sacrifice of our volunteers. Volunteers on the Data Entry, Data Quality, and Data Infrastructure teams who granted us permission to use their name publicly are listed in VOLUNTEERS.md
.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Google, one of the greatest gifts to mankind. Any information that you need today is available on Google. Google is a household name and literally, everyone is aware of what Google is. It helps you get resources for your school projects, helps you shop online and much more. Google has made getting an education a lot easier for people across the globe. No matter where you are, you can access google provided you have internet. Every piece of info is available on google and it's all one click away. But Google has a parent company known as Alphabet Inc. that trades and here we have stock data from A Alphabet Inc.
This data set has 7 columns with all the necessary values such as the opening price of the stock, the closing price of it, its highest in the day and much more. It has date wise data of the stock starting from 2004 to 2023(October).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The primary elements of this dataset are the reviews and ratings given by users to the SnapChat App, updated every day. Additional information such as the relevancy of each review and the posting date is also included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents travel duration, season, lodging, well-liked tourist destinations, cuisine, dining options, and details of cultural events in the hill track regions of Bangladesh. The major purpose of the dataset is to develop a tourist chatbot in the hilly visiting places of Bangladesh. Four hill tract regions in Bangladesh—Khagrachhari, Rangamati, Bandarban, and Sylhet—are included in this dataset. Data was gathered from sources such as travelagency.com, community-based travel websites, online and offline surveys with different people, Google Maps, and more. This dataset includes 502 records of hill tract regions from 502 unique users, with 130 records for Khagrachhari, 141 records for Rangamati, 103 records for Bandarban, and 128 records for Sylhet. There were 15 variables (features) considered for the whole 502 data. These features include user ID, district, vehicle, travel time, time to reach destination, season, tourist spots, similar spots, resorts/hotels, restaurants, traditional food, indigenous group, traditional dress/attire, traditional dress shop, and minimum cost (per day).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset mainly consists of daily-updated user reviews and ratings for the ChatGPT Android App. It also contains data on the relevancy of these reviews and the dates they were posted.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
In the last five years, the web portal industry has recorded significant revenue growth. Industry revenue increased by an average of 3.8% per year between 2019 and 2024 and is expected to reach 12.6 billion euros in the current year. The web portal industry comprises a variety of platforms such as social networks, search engines, video platforms and email services that are used by millions of users every day. These portals enable the exchange of information and communication as well as entertainment. Web portals generate their revenue mainly through advertising, premium services and commission payments. User numbers are rising steadily as more and more people go online and everyday processes are increasingly digitalised.In 2024, industry revenue is expected to increase by 3.2 %. Although the industry is growing, it is also facing challenges, particularly in terms of data protection. Web portals are constantly collecting user data, which can lead to misuse of the collected data. The General Data Protection Regulation (GDPR) introduced in the European Union in 2018 has prompted web portal operators to review their data protection practices and amend their terms and conditions in order to avoid fines. The aim of this regulation is to improve the protection of personal data and prevent data misuse.The industry's turnover is expected to increase by an average of 3.6% per year to 15 billion euros over the next five years. Video platforms such as YouTube often generate losses despite high user numbers. The reasons for this are the high costs of operation and infrastructure as well as expenses for copyright issues and compliance. Advertising on video platforms is perceived negatively by users, but is successful when it comes to attracting attention. Politicians are debating the taxation of revenues generated by internationally operating web portals based in tax havens. Another challenge is the copying of concepts, which inhibits innovation in the industry and can lead to legal problems.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains the historical stock prices and related financial information for five major technology companies: Apple (AAPL), Microsoft (MSFT), Amazon (AMZN), Google (GOOGL), and Tesla (TSLA). The dataset spans a five-year period from January 1, 2019, to January 1, 2024. It includes key stock metrics such as Open, High, Low, Close, Adjusted Close, and Volume for each trading day.
The data was sourced using the yfinance library in Python, which provides convenient access to historical market data from Yahoo Finance.
The dataset contains the following columns:
Date: The trading date. Open: The opening price of the stock on that date. High: The highest price of the stock on that date. Low: The lowest price of the stock on that date. Close: The closing price of the stock on that date. Adj Close: The adjusted closing price, accounting for dividends and splits. Volume: The number of shares traded on that date. Ticker: The stock ticker symbol representing each company.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
This dataset is a cleaned-up extract from the following public BigQuery dataset: https://console.cloud.google.com/marketplace/details/noaa-public/ghcn-d
The dataset contains daily min/max temperatures from a selection of 1666 weather stations. The data spans exactly 50 years. Missing values have been interpolated and are marked as such.
This dataset is in TFRecord format.
About the original dataset: NOAA’s Global Historical Climatology Network (GHCN) is an integrated database of climate summaries from land surface stations across the globe that have been subjected to a common suite of quality assurance reviews. The data are obtained from more than 20 sources. The GHCN-Daily is an integrated database of daily climate summaries from land surface stations across the globe, and is comprised of daily climate records from over 100,000 stations in 180 countries and territories, and includes some data from every year since 1763.
This is the US Coronavirus data repository from The New York Times . This data includes COVID-19 cases and deaths reported by state and county. The New York Times compiled this data based on reports from state and local health agencies. More information on the data repository is available here . For additional reporting and data visualizations, see The New York Times’ U.S. coronavirus interactive site
Which US counties have the most confirmed cases per capita? This query determines which counties have the most cases per 100,000 residents. Note that this may differ from similar queries of other datasets because of differences in reporting lag, methodologies, or other dataset differences.
SELECT
covid19.county,
covid19.state_name,
total_pop AS county_population,
confirmed_cases,
ROUND(confirmed_cases/total_pop *100000,2) AS confirmed_cases_per_100000,
deaths,
ROUND(deaths/total_pop *100000,2) AS deaths_per_100000
FROM
bigquery-public-data.covid19_nyt.us_counties
covid19
JOIN
bigquery-public-data.census_bureau_acs.county_2017_5yr
acs ON covid19.county_fips_code = acs.geo_id
WHERE
date = DATE_SUB(CURRENT_DATE(),INTERVAL 1 day)
AND covid19.county_fips_code != "00000"
ORDER BY
confirmed_cases_per_100000 desc
How do I calculate the number of new COVID-19 cases per day?
This query determines the total number of new cases in each state for each day available in the dataset
SELECT
b.state_name,
b.date,
MAX(b.confirmed_cases - a.confirmed_cases) AS daily_confirmed_cases
FROM
(SELECT
state_name AS state,
state_fips_code ,
confirmed_cases,
DATE_ADD(date, INTERVAL 1 day) AS date_shift
FROM
bigquery-public-data.covid19_nyt.us_states
WHERE
confirmed_cases + deaths > 0) a
JOIN
bigquery-public-data.covid19_nyt.us_states
b ON
a.state_fips_code = b.state_fips_code
AND a.date_shift = b.date
GROUP BY
b.state_name, date
ORDER BY
date desc
The datasets below have been analyzed in order to complete the Capstone Project for the Data Analyst Google Certification program. I have chosen to take on the Bellabeat case study.
The datasets below contain two months' worth (3/12/2016-5/12/2016) of recorded daily activity levels and sleep patterns.
This data was extracted from the original datasets created by Furberg, Robert; Brinton, Julia; Keating, Michael ; Ortiz, Alex. https://zenodo.org/record/53894#.YYfQ5m3MK5e
The cover image information: Photo by Mark Basarab on Unsplash
I wanted to see if there was a correlation between the amount of sleep individuals had and their activity levels throughout the day.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset investigates the relationship between Wordle answers and Google search spikes, particularly for uncommon words. It spans from June 21, 2021 to June 24, 2025.
It includes daily data for each Wordle answer, its search trend on that day, and frequency-based commonality indicators.
Each Wordle answer causes a spike in search volume on the day it appears — more so if the word is rare.
This dataset supports exploration of:
Column | Description |
---|---|
date | Date of the Wordle puzzle |
word | Correct 5-letter Wordle answer |
game | Wordle game number |
wordfreq_commonality | Normalized frequency score using Python’s wordfreq library |
subtlex_commonality | Normalized frequency score using SUBTLEX-US dataset |
trend_day_global | Google search interest on the day (global, all categories) |
trend_avg_200_global | 200-day average search interest (global, all categories) |
trend_day_language | Search interest on Wordle day (Language Resources category) |
trend_avg_200_language | 200-day average search interest (Language Resources category) |
Notes: - All trend values are relative (0–100 scale, per Google Trends)
wordfreq
Python librarypytrends
Can find analysis done using this data in the blog post