82 datasets found
  1. Twitter users in the United States 2019-2028

    • statista.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

  2. X/Twitter: Countries with the largest audience 2024

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). X/Twitter: Countries with the largest audience 2024 [Dataset]. https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2024
    Area covered
    Worldwide
    Description

    Social network X/Twitter is particularly popular in the United States, and as of April 2024, the microblogging service had an audience reach of 106.23 million users in the country. Japan and the India were ranked second and third with more than 69 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.

  3. s

    Why Do People Use Twitter?

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Why Do People Use Twitter? [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    One of the biggest advantages of Twitter is the speed at which information can be passed around. People use Twitter primarily to get news and for entertainment. This is the breakdown of why people use Twitter today.

  4. s

    Data from: Twitter Users

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average Twitter user spends 5.1 hours per month on the platform.

  5. X/Twitter: number of worldwide users 2019-2024

    • statista.com
    • flwrdeptvarieties.store
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). X/Twitter: number of worldwide users 2019-2024 [Dataset]. https://www.statista.com/statistics/303681/twitter-users-worldwide/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Worldwide
    Description

    As of December 2022, X/Twitter's audience accounted for over 368 million monthly active users worldwide. This figure was projected to decrease to approximately 335 million by 2024, a decline of around five percent compared to 2022.

  6. s

    Twitter Revenue Growth

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter Revenue Growth [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advertising makes up 89% of its total revenue and data licensing makes up about 11%.

  7. s

    Twitter Users Broken down By Country

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter Users Broken down By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.

  8. Reddit users in the United States 2019-2028

    • statista.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Reddit users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.

  9. s

    American Monthly Active Users USA

    • searchlogistics.com
    Updated Dec 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). American Monthly Active Users USA [Dataset]. https://www.searchlogistics.com/learn/statistics/tiktok-user-statistics/
    Explore at:
    Dataset updated
    Dec 28, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TikTok has 102.3 million monthly active users in the US alone. This is forecasted to reach 121.1 million by 2027.

  10. s

    How Popular Is Twitter In The US?

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    How Popular Is Twitter In The US? [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US has the largest number of Twitter users with 79.6 million users. They account for about 16.7% of all Twitter users worldwide.

  11. s

    Twitter Key Statistics

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter Key Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are the key Twitter user statistics that you need to know.

  12. U.S. Facebook users 2025, by age and gender

    • statista.com
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. Facebook users 2025, by age and gender [Dataset]. https://www.statista.com/statistics/187041/us-user-age-distribution-on-facebook/
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    United States
    Description

    As of January 2025, users aged 25 to 34 years made up Facebook's largest audience in the United States, accounting for 24.2 percent of the social network's user base, with 12.3 percent of those users being women. Overall, 9.7 percent of users aged 35 to 44 years were women, and 9.3 percent were men. How many people use Facebook in the United States? Facebook is by far the most used social network in the world and finds a huge share of its audience in the United States. Facebook’s U.S. audience size comes second only to India. In 2023, there were over 246 million Facebook users in the U.S. By 2028, it is estimated that around 263 million people in the U.S. will be signed up for the platform. How do users in the United States view the platform? Although Facebook is widely used and very popular with U.S. consumers, there are issues of trust with its North American audience. As of November 2021, 72 percent of respondents reported that they did not trust Facebook with their personal data. Despite having privacy doubts, a May 2022 survey found that 20 percent of adults had a very favorable opinion of Facebook, and one-third held a somewhat positive view of the platform.

  13. T

    Twitter Statistics

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Search Logistics, Twitter Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset authored and provided by
    Search Logistics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These Twitter user statistics will give you the complete story of where Twitter is at today and what the future looks like for the social media company.

  14. s

    Data from: Facebook Users

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Facebook Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.

  15. INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • zenodo.org
    • data.niaid.nih.gov
    pdf
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman; Nishat Anjum; Kishor Datta Gupta; Kishor Datta Gupta; Nafiz Sadman; Nishat Anjum (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. http://doi.org/10.5281/zenodo.4047648
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nafiz Sadman; Nishat Anjum; Kishor Datta Gupta; Kishor Datta Gupta; Nafiz Sadman; Nishat Anjum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    • The headline must have one or more words directly or indirectly related to COVID-19.
    • The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
    • The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
    • Avoid taking duplicate reports.
    • Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    • Remove hyperlinks.
    • Remove non-English alphanumeric characters.
    • Remove stop words.
    • Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics
    
    No of words per
    headline
    
    7 to 20
    
    No of words per body
    content
    
    150 to 2100
    
    Table 2: Covid-News-BD-NNK data statistics
    No of words per
    headline
    
    10 to 20
    
    No of words per body
    content
    
    100 to 1500
    

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    • In February, both the news paper have talked about China and source of the outbreak.
    • StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
    • Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
    • Washington Post discussed global issues more than StarTribune.
    • StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
    • While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract

  16. Illinois DOC labeled faces dataset

    • kaggle.com
    Updated Dec 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Fisher (2019). Illinois DOC labeled faces dataset [Dataset]. https://www.kaggle.com/davidjfisher/illinois-doc-labeled-faces-dataset/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    David J. Fisher
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    This is a dataset of prisoner mugshots and associated data (height, weight, etc). The copyright status is public domain, since it's produced by the government, the photographs do not have sufficient artistic merit, and a mere collection of facts aren't copyrightable.

    The source is the Illinois Dept. of Corrections. In total, there are 68149 entries, of which a few hundred have shoddy data.

    It's useful for neural network training, since it has pictures from both front and side, and they're (manually) labeled with date of birth, name (useful for clustering), weight, height, hair color, eye color, sex, race, and some various goodies such as sentence duration and whether they're sex offenders.

    Here is the readme file:

    ---BEGIN README---
    Scraped from the Illinois DOC.

    https://www.idoc.state.il.us/subsections/search/inms_print.asp?idoc=
    https://www.idoc.state.il.us/subsections/search/pub_showfront.asp?idoc=
    https://www.idoc.state.il.us/subsections/search/pub_showside.asp?idoc=

    paste <(cat ids.txt | sed 's/^/http://www.idoc.state.il.us/subsections/search/pub_showside.asp?idoc=/g') <(cat ids.txt| sed 's/^/ out=/g' | sed 's/$/.jpg/g') -d ' ' > showside.txt
    paste <(cat ids.txt | sed 's/^/http://www.idoc.state.il.us/subsections/search/pub_showfront.asp?idoc=/g') <(cat ids.txt| sed 's/^/ out=/g' | sed 's/$/.jpg/g') -d ' ' > showfront.txt
    paste <(cat ids.txt | sed 's/^/http://www.idoc.state.il.us/subsections/search/inms_print.asp?idoc=/g') <(cat ids.txt| sed 's/^/ out=/g' | sed 's/$/.html/g') -d ' ' > inmates_print.txt

    aria2c -i ../inmates_print.txt -j4 -x4 -l ../log-$(pwd|rev|cut -d/ -f 1|rev)-$(date +%s).txt

    Then use htmltocsv.py to get the csv. Note that the script is very poorly written and may have errors. It also doesn't do anything with the warrant-related info, although there are some commented-out lines which may be relevant.
    Also note that it assumes all the HTML files are located in the inmates directory., and overwrites any csv files in csv if there are any.

    front.7z contains mugshots from the front
    side.7z contains mugshots from the side
    inmates.7z contains all the html files
    csv contains the html files converted to CSV

    The reason for packaging the images is that many torrent clients would otherwise crash if attempting to load the torrent.

    All CSV files contain headers describing the nature of the columns. For person.csv, the id is unique. For marks.csv and sentencing.csv, it is not.
    Note that the CSV files use semicolons as delimiters and also end with a trailing semicolon. If this is unsuitable, edit the arr2csvR function in htmltocsv.py.

    There are 68149 inmates in total, although some (a few hundred) are marked as "Unknown"/"N/A"/"" in one or more fields.

    The "height" column has been processed to contain the height in inches, rather than the height in feet and inches expressed as "X ft YY in."
    Some inmates were marked "Not Available", this has been replaced with "N/A".
    Likewise, the "weight" column has been altered "XXX lbs." -> "XXX". Again, some are marked "N/A".

    The "date of birth" column has some inmates marked as "Not Available" and others as "". There doesn't appear to be any pattern. It may be related to the institution they are kept in. Otherwise, the format is MM/DD/YYYY.

    The "weight" column is often rounded to the nearest 5 lbs.

    Statistics for hair:
    43305 Black
    17371 Brown
    2887 Blonde or Strawberry
    2539 Gray or Partially Gray
    740 Red or Auburn
    624 Bald
    396 Not Available
    209 Salt and Pepper
    70 White
    7 Sandy
    1 Unknown

    Statistics for sex:
    63409 Male
    4740 Female

    Statistics for race:
    37991 Black
    20992 White
    8637 Hispanic
    235 Asian
    104 Amer Indian
    94 Unknown
    92 Bi-Racial
    4

    Statistics for eyes:
    51714 Brown
    7808 Blue
    4259 Hazel
    2469 Green
    1382 Black
    420 Not Available
    87 Gray
    9 Maroon
    1 Unknown
    ---END README---

    Here is a formal summary:

    ---BEGIN SUMMARY---
    Documentation:

    1. Title: Illinois DOC dataset

    2. Source Information
      -- Creators: Illinois DOC
      -- Illinois Department of Corrections
      1301 Concordia Court
      P.O. Box 19277
      Springfield, IL 62794-9277
      (217) 558-2200 x 2008
      -- Donor: Anonymous
      -- Date: 2019

    3. Past Usage:
      -- None

    4. Relevant Information:
      -- All CSV files contain headers describing the nature of the columns. For person.csv, the id is unique. For marks.csv and sentencing.csv, it is not.
      -- Note that the CSV files use semicolons as delimiters and also end with a trailing semicolon. If this is unsuitable, edit the arr2csvR function in htmltocsv...

  17. s

    Twitter Users Broken Down By Age

    • searchlogistics.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter Users Broken Down By Age [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the breakdown of Twitter users by age group.

  18. c

    Commuter Mode Share

    • data.ccrpc.org
    csv
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Commuter Mode Share [Dataset]. https://data.ccrpc.org/dataset/commuter-mode-share
    Explore at:
    csv(1639)Available download formats
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This commuter mode share data shows the estimated percentages of commuters in Champaign County who traveled to work using each of the following modes: drove alone in an automobile; carpooled; took public transportation; walked; biked; went by motorcycle, taxi, or other means; and worked at home. Commuter mode share data can illustrate the use of and demand for transit services and active transportation facilities, as well as for automobile-focused transportation projects.

    Driving alone in an automobile is by far the most prevalent means of getting to work in Champaign County, accounting for over 69 percent of all work trips in 2023. This is the same rate as 2019, and the first increase since 2017, both years being before the COVID-19 pandemic began.

    The percentage of workers who commuted by all other means to a workplace outside the home also decreased from 2019 to 2021, most of these modes reaching a record low since this data first started being tracked in 2005. The percentage of people carpooling to work in 2023 was lower than every year except 2016 since this data first started being tracked in 2005. The percentage of people walking to work increased from 2022 to 2023, but this increase is not statistically significant.

    Meanwhile, the percentage of people in Champaign County who worked at home more than quadrupled from 2019 to 2021, reaching a record high over 18 percent. It is a safe assumption that this can be attributed to the increase of employers allowing employees to work at home when the COVID-19 pandemic began in 2020.

    The work from home figure decreased to 11.2 percent in 2023, but which is the first statistically significant decrease since the pandemic began. However, this figure is still about 2.5 times higher than 2019, even with the COVID-19 emergency ending in 2023.

    Commuter mode share data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Means of Transportation to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 September 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (14 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  19. 2021 American Community Survey: B08016 | PLACE OF WORK FOR WORKERS 16 YEARS...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2021 American Community Survey: B08016 | PLACE OF WORK FOR WORKERS 16 YEARS AND OVER--METROPOLITAN STATISTICAL AREA LEVEL (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?q=Commuting&tid=ACSDT1Y2021.B08016
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Workers include members of the Armed Forces and civilians who were at work last week..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  20. c

    Employment and Unemployment

    • data.ccrpc.org
    csv
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Unemployment [Dataset]. https://data.ccrpc.org/dataset/employment-and-unemployment
    Explore at:
    csv(2799)Available download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.

    The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.

    The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.

    There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.

    The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.

    All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.

    This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.

    Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
Organization logo

Twitter users in the United States 2019-2028

Explore at:
74 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 13, 2024
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Area covered
United States
Description

The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

Search
Clear search
Close search
Google apps
Main menu