33 datasets found
  1. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  2. n

    Satellite (VIIRS) Thermal Hotspots and Fire Activity - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Satellite (VIIRS) Thermal Hotspots and Fire Activity - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/satellite-viirs-thermal-hotspots-and-fire-activity
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsSeptember 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. Fish Dataset

    • kaggle.com
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alin Cijov (2021). Fish Dataset [Dataset]. https://www.kaggle.com/alincijov/fish-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 20, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alin Cijov
    Description

    Dataset

    Camper dataset form https://stats.idre.ucla.edu/r/dae/zip/. The dataset contains data on 250 groups that went to a park. Each group was questioned about how many fish they caught (count), how many children were in the group (child), how many people were in the group (persons), if they used a live bait and whether or not they brought a camper to the park (camper). You split the data into train and test dataset.

    Acknowledgements

    University of California, Los Angeles (UCLA) Dataset.

  4. e

    New urbanisms in India: Urban living, sustainability, everyday life -...

    • b2find.eudat.eu
    Updated Mar 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). New urbanisms in India: Urban living, sustainability, everyday life - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/42318dc5-11c3-5bbc-bd7e-1fde35dadcfa
    Explore at:
    Dataset updated
    Mar 21, 2017
    Area covered
    India
    Description

    This data collection consists of interview transcripts, guided walks, drawings, focus groups and photographs. The methodological approach for this project was qualitative, collating a diverse range of data about the everyday lives of young people (aged 5-23) and their families living in a site of urban change. As Children’s Geographers, our approach enables children and young people to be key informants in retelling their experiences of urban change – through their voice, mobilities and everyday interactions. Grounded in ethnography, for an eleven-month period the researchers lived in the case study site (January 2015 – November 2015), getting to know what life is like for children and their families. Project methodologies included: individual in-depth interviews, guided walks, drawings, focus groups, community based workshops and the use of a research mobile app ‘Map my Community.’ Forty core families from a diverse range of social backgrounds participated in the project – the team conducted 170 interviews and engaged with 350 children, young people and their families. This project investigated the everyday lives of children, young people and their families living in a site of urban change in India (2013-2016). Three hundred and fifty people from diverse backgrounds took part in this research which set to explore interactions, issues and experiences of urban transformation. Three core thematic areas were pursued: (1) everyday routines, mobility and access, (2) experience and access to nature and green space in a new urban development and (3) everyday experiences of internationalising principles of urban design. One of the primary aims of the project was to gather data on a diversity of experiences of urban transformation. Forty core families participated from diverse social backgrounds. Examples of this diversity included: i) families who lived on the land prior to the development, with ancestral links to the land and its past; ii) migrant workers and their families, who were contracted to work on the build; iii) students who had moved to the area for Higher Education; iv) families who had bought a villa or a flat; and v) families who were supporting the tourism industry, from hotel workers to restaurateurs and shop keepers. Young participants (under the age of 10) were asked to draw a picture – ‘Draw a picture to show a child in another country where you live.’ This method was used to introduce the young participants to the research project and to be used as a prompt in the first interview ‘Getting to know you’ – where the researcher and the participant would talk through the drawing to glean further information about their life and experiences of urban change. These drawings and narratives formed a key part of the data collection. 72 anonymised drawings are included in the archive. Core families took part in a series of interviews about various aspects of their everyday lives. The first interview focused on ‘Getting to know you’ and the second was in relation to mobility, going through the data collated from the mobile app ‘Map my Community’. During this interview, participants would be asked a series of questions about their data (tracks from the GPS) and using Google Earth they navigated around their tracks and spoke to the data. Interview three focused on access and experiences of nature and green space. 164 anonymised interview transcripts are included in the archive. Participant-led guided walks were used to further gather data on mobility and everyday interactions with the natural and built environment. The guided walks were arranged with young people, either individually or in peer groups and they guided the researcher around their local area, prompted with questions. Typically, guided walks would last over an hour and would involve walking through the forest, taking familiar journeys and highlighting areas of the development participants liked or thought needed improving. During the monsoon guided walks were extremely difficult to organise, thus, these became ‘Google guided walks’ (using a laptop and Google Earth to navigate through and around where they live). This method had many benefits, including the ability to show the researchers other spaces of importance to them, which were often out of reach on a traditional guided walk (i.e. where the family collects water or an area of the forest used to collect berries). The app, ‘Map my Community’ was designed as an innovative mapping tool to capture data on young people and their families’ mobilities, their access to services and everyday experiences of their local environment. Mobile technologies are being increasingly used as tools to support social research (Hesse-Bieber 2011; Ergler et al. 2016; Hadfield-Hill and Horton 2014), indeed the mobile app and the data collected was seen as part of the broader suite of qualitative methodologies. The use of the app builds on previous ESRC funded research (New Urbanisms, New Citizens: RES-062-23-1549 - see Related Resources) which used GPS devices to collect and visualise participant data. The use of a mobile app in this research was particularly innovative given the direct insight into social and spatial practices which the data yielded. The data gave extraordinary insight into everyday mobilities, marginal spaces and temporalities of life in a new urban development. The data revealed insight into everyday interior and private spaces and moments which are normally difficult to access in social science research, favourite spaces, family routines and habits. The app participants took part in a follow up interview about their mobility (Interview B). The mobile tracks are not stored in the data archive as these are Geo-tagged locations of young people and their families homes and routines. The photographs from the app have not been shared due to anonymity. Photographs from the fieldwork (all those without people) are uploaded to the archive.

  5. n

    Satellite (MODIS) Thermal Hotspots and Fire Activity - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Satellite (MODIS) Thermal Hotspots and Fire Activity - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/satellite-modis-thermal-hotspots-and-fire-activity
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA FIRMS - Active Fire Data - for WorldScale/Resolution: 1kmUpdate Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed MethodologyArea Covered: WorldWhat can I do with this layer?The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Additional InformationMODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.Attribute InformationLatitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.Acquisition Date: Derived Date/Time field combining Date and Time attributes.Satellite: Whether the detection was picked up by the Terra or Aqua satellite.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.RevisionsJune 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  6. MODIS Thermal (Last 7 days)

    • wifire-data.sdsc.edu
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). MODIS Thermal (Last 7 days) [Dataset]. https://wifire-data.sdsc.edu/dataset/modis-thermal-last-7-days
    Explore at:
    geojson, kml, arcgis geoservices rest api, csv, html, zipAvailable download formats
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.


    Consumption Best Practices:

    • As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to 'https://en.wikipedia.org/wiki/Rate_limiting' rel='nofollow ugc'>Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.
    • When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.

    Scale/Resolution: 1km

    Update Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed Methodology

    Area Covered: World

    What can I do with this layer?
    The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.

    Additional Information
    MODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.

    It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.

    Attribute Information
    • Latitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?
    • Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.
    • Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?
    • Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.
    • Acquisition Date: Derived Date/Time field combining Date and Time attributes.
    • Satellite: Whether the detection was picked up by the Terra or Aqua satellite.
    • Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.
    • Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.
    • Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.
    • FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).
    • DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.
    • Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.
    Revisions
    • June 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.
    This map is provided for informational purposes and is not monitored 24/7 for accuracy and

  7. Core Set of forest-related indicators - Forest Proximate People (Global -...

    • data.amerigeoss.org
    http, wmts
    Updated Jun 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Core Set of forest-related indicators - Forest Proximate People (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/03418ce8-64c5-4f28-9cc5-ac69707691b8
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Jun 11, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Madrid, M., & Pina, L. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Rome, FAO.

    Contact points:

    Metadata Contact: Leticia Pina

    Resource Contact: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Madrid, M., & Pina, L. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Rome, FAO.

    References: Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest Proximate People" (FPP) dataset

  8. Number of internet users worldwide 2014-2029

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  9. MODIS Thermal (Last 48 hours)

    • wifire-data.sdsc.edu
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). MODIS Thermal (Last 48 hours) [Dataset]. https://wifire-data.sdsc.edu/dataset/modis-thermal-last-48-hours
    Explore at:
    csv, geojson, html, arcgis geoservices rest api, zip, kmlAvailable download formats
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.


    Consumption Best Practices:

    • As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to 'https://en.wikipedia.org/wiki/Rate_limiting' rel='nofollow ugc'>Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.
    • When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.

    Scale/Resolution: 1km

    Update Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed Methodology

    Area Covered: World

    What can I do with this layer?
    The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.

    Additional Information
    MODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.

    It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.

    Attribute Information
    • Latitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?
    • Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.
    • Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?
    • Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.
    • Acquisition Date: Derived Date/Time field combining Date and Time attributes.
    • Satellite: Whether the detection was picked up by the Terra or Aqua satellite.
    • Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.
    • Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.
    • Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.
    • FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).
    • DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.
    • Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.
    Revisions
    • June 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.
    This map is provided for informational purposes and is not monitored 24/7 for accuracy and

  10. Tree proximate people – Croplands, 1km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Tree proximate people – Croplands, 1km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/es/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b6
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Tree Proximate People" (TPP) dataset provides an estimate of the number of people living in or within 1 kilometer of trees outside forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level. Trees outside forests are defined as areas classified as croplands with at least 10% tree cover.

    For more detail, such as the theory behind, the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The TPP data are generated using Google Earth Engine. Trees outside forests (TOFs) are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) fractional cover data layer using a minimum of 10% tree cover on croplands lands. Any area classified as land with TOFs sized ≥ 1 ha in 2019 was included in this definition. Lands classified as forests in CGLC were excluded from the analysis. Croplands were defined using the FAO-LCCS2 land use classification layer from MODIS Land Cover (MCD12Q1.006). Croplands were defined as the total of three classifications: 1) “Herbaceous Croplands”: dominated by herbaceous annuals (<2m) with at least 60% cover and a cultivated fraction >60%, 2) “Natural Herbaceous/Croplands Mosaics”: mosaics of small-scale cultivation 40-60% with natural shrub or herbaceous vegetation, and 3) “Forest/Cropland Mosaics”: mosaics of small-scale cultivation 40-60% with >10% natural tree cover. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of TOFs on croplands in 2019 were classified as tree proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each TOF pixel. The scripts for generating the tree-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Tree proximate people – Croplands, 1km cutoff distance"

  11. n

    Station and ship person days

    • cmr.earthdata.nasa.gov
    cfm
    Updated Jul 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Station and ship person days [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214311276-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Jul 17, 2019
    Time period covered
    Oct 1, 1986 - Present
    Area covered
    Description

    Information was obtained from the ANARE Health Register. See Metadata record entitled ANARE Health Register.

    INDICATOR DEFINITION Human population in stations and ships expressed in person-days.

    TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system.

    This indicator is one of: PRESSURE

    RATIONALE FOR INDICATOR SELECTION It is generally accepted that the potential impact on the natural environment is proportional to the human population. This is the 'human footprint'. Human activities can cause disruption in physical, chemical and biological systems. As stated by the Australian Bureau of Statistics (1996): 'To understand the human impact on the Australian environment, it is necessary to know how many people live here, and how they are distributed across the continent.'

    This indicator reveals where the greatest direct pressures related to size of the human population (e.g. fuel usage, sewerage and other waste generation etc) occur.

    DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: Antarctic and sub-Antarctic stations and ANARE ships travelling to and from these stations.

    Frequency: Monthly figures reported annually.

    Measurement technique: The Polar Medicine Branch collects data on all expeditioner movements. These data are entered into the Health Register and updated as personnel arrive on or leave a station.

    RESEARCH ISSUES Now that this figure is available, research is required to ascertain the quantitive relationships of station and ship population to other indicators such as fuel usage and waste generation. This measure may be able to deliver a quantitative estimate of human pressure on the Antarctic environment.

    LINKS TO OTHER INDICATORS SOE Indicator 47 - Number and nature of incidents resulting in environmental impact SOE Indicator 49 - Medical consultations per 1000 person years SOE Indicator 50 - Effluent monitoring - Volume of coastal discharge from Australian stations SOE Indicator 51 - Effluent monitoring - Biological oxygen demand SOE Indicator 52 - Effluent monitoring - Suspended solids content SOE Indicator 53 - Recycled and quarantine waste returned to Australia SOE Indicator 54 - Amount of waste incinerated at Australian Stations SOE Indicator 56 - Monthly fuel usage of the generator sets and boilers SOE Indicator 57 - Monthly total of fuel used by station incinerators SOE Indicator 58 - Monthly total of fuel used by station vehicles SOE Indicator 59 - Monthly electricity usage SOE Indicator 60 - Total helicopter hours SOE Indicator 61 - Total potable water consumption

    The fields in this dataset are: Location Date Population (person-days) Illness Rate (per 1000 person years) Injury Rate (per 1000 person years)

  12. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How much time do people spend on social media?

                  As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
                  the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
                  People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
                  During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
    
  13. d

    OC 2017 DEM Image Service

    • portal.datadrivendetroit.org
    • accessoakland.oakgov.com
    • +2more
    Updated May 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2018). OC 2017 DEM Image Service [Dataset]. https://portal.datadrivendetroit.org/datasets/304f61084a5446128454ab065d68cfe0
    Explore at:
    Dataset updated
    May 5, 2018
    Dataset authored and provided by
    Oakland County, Michigan
    Area covered
    Description

    BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE. To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments, and hydrologic modeling. LAS and bare earth DEM data products are suitable for 1 foot contour generation. USGS LiDAR Base Specification 1.2, QL2. 19.6 cm NVA.This metadata record describes the hydro-flattened bare earth digital elevation model (DEM) derived from the classified LiDAR data for the 2017 Michigan LiDAR project covering approximately 907 square miles, in which its extents cover Oakland County.This data is for planning purposes only and should not be used for legal or cadastral purposes. Any conclusions drawn from analysis of this information are not the responsibility of Sanborn Map Company. Users should be aware that temporal changes may have occurred since this dataset was collected and some parts of this dataset may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations. Contact: State of MichiganDue to the large size of the data, downloading the entire county may not be possible. It is recommended to use the live service directly within ArcMap or ArcGIS Pro. For further questions, contact the Oakland County Service Center at 248-858-8812, servicecenter@oakgov.com.

  14. c

    Satellite (VIIRS) Thermal Hotspots and Fire Activity

    • cacgeoportal.com
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Satellite (VIIRS) Thermal Hotspots and Fire Activity [Dataset]. https://www.cacgeoportal.com/maps/9eaa252e879a44abbedb8ec02b55ea2e
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This live Web Map is a subset of Global Satellite (VIIRS) Thermal Hotspots and Fire ActivityThis layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices:As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP, NOAA-20, and NOAA-21 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1) or NOAA-21 satellite (2). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsMarch 7, 2024: Updated to include source data from NOAA-21 Satellite.September 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  15. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  16. n

    Data from: CephBase

    • gcmd.earthdata.nasa.gov
    • access.earthdata.nasa.gov
    Updated Apr 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). CephBase [Dataset]. https://gcmd.earthdata.nasa.gov/r/d/utmbnrcc_cephbase_obis_1
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1998 - Present
    Description

    CephBase is a dynamic html (dhtml) relational database-driven interactive web site that has been online since 1998. The prototype version of CephBase was developed at Dalhousie Univeristy in Halifax, Canada and was sponsored by the Sloan Foundation following the Workshop on Non-Fish Nekton in Boston, December, 1997. As of 12/2000, CephBase has all the taxa, authorities, and the year the taxa was described online for all of the 703 known living species of cephalopods listed by Sweeney and Roper (1998). CephBase provides taxonomic data, distribution, images, videos, predator and prey data, size, references and scientific contact information for all living species of cephalopods (octopus, squid, cuttlefish and nautilus) in an easy to access, user-friendly manner.

           Information on a particular species can be quickly located by using the search engine; results are listed in table format. Users simply click on a species cephalopod is displayed. Users can also display an alphabetized list of all cephalopod genera. Clicking on a genus leads to a list of all species it contains. For each species, synonymies, type repositories, type localities, references and common names are listed. References are listed in abbreviated form with access to full references. 
    
           Species Database: 
           Search by scientific, common name or synonym to call up species-specific pages with information such as full taxonomy, type species, names, size, predators, prey, biogeography, distribution maps, country lists, life history, images, videos, references, genetic information links and other internet resources. 
    
           Image Database: 
           Search our ~1650 cephalopod images which cover all life stages, behaviour, ecology, taxonomy as well as many other aspects of these amazing animals. Each image has a caption, key words, location, photographer and other data. 
    
           Video Database: 
           There are ~150 video clips in the video database. 
    
           Reference Database: 
           There are now over 6000 ceph papers in our reference database. 
    
           Researcher Directory: 
           Looking for a grad school supervisor or cephalopod expert? There are over 400 names in the International Directory of Cephalopod Workers. 
    
           Predators and Prey: 
           Search by predator, prey or cephalopod species in our predators and prey databases. 
    
           To answer the question, "Where does it live?", CephBase has 3,175 referenced localities for 328 species served by OBIS.  All latitude and longitude data used to generate maps are from published sources and are listed in tables and referenced. In many cases, the individual specimens used to populate the database can be tracked to a museum repository.
    
           The purpose of CephBase is to provide taxonomy, life history, distribution, fisheries, and ecology for all living cephalopod species (i.e., octopus, squid, cuttlefish and nautilus). Such a global database will facilitate collaboration both within the cephalopod community and among all marine sciences.
    
           The data can be accessed through the following web portals (see Related URL field below):
           -OBIS, Ocean Biogeographic Information System, CoML (Census of Marine Life) web portal.
           -EurOBIS, the European Ocean Biogeographique Information System. 
           -SCAR-MarBIN, the Marine Biodiversity Information Network, Scientific Committee on Antarctic Research, International Council for Science.
    
  17. e

    Satellite (VIIRS) Thermal Hotspots and Fire Activity

    • climate.esri.ca
    • climat.esri.ca
    • +2more
    Updated Jul 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Satellite (VIIRS) Thermal Hotspots and Fire Activity [Dataset]. https://climate.esri.ca/datasets/arcgis-content::satellite-viirs-thermal-hotspots-and-fire-activity-2
    Explore at:
    Dataset updated
    Jul 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    This app is part of Indicators of the Planet. Please see https://livingatlas.arcgis.com/indicatorsThis layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireNote about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.

  18. Facebook: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.

                  Facebook connects the world
    
                  Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
                  as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
    
  19. bedrock calculations

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Jun 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2022). bedrock calculations [Dataset]. https://data.catchmentbasedapproach.org/datasets/bgs::bedrock-calculations
    Explore at:
    Dataset updated
    Jun 26, 2022
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    Area covered
    Description

    The Feature Layer made available to the Living Atlas has been adapted from the 625k Geology dataset freely available from the BGS website. The attribution and labels of the geological areas (or polygons) have been simplified to make the data more available to a wider audience. The dataset is aimed at students with an interest in Earth Sciences and amateur geologists who want to find out more. The LEX_RCS & LEX_ROCK codes have been preserved to allow users to reference the layers to to the 625k Geology Dataset.

    About BGS Geology 625k:

    BGS Geology 625k is a generalised digital geological map dataset based on BGS’s published poster maps of the UK (north and south). Bedrock-related themes were created by generalisation of 1:50 000 data to make the 2007 fifth edition bedrock geology map. Superficial geology-related themes were digitised from the 1977 first edition Quaternary map (north and south). Many BGS geology maps are now available digitally. The Digital Geological Map of Great Britain project (formerly known as DiGMapGB) has prepared 1:625 000, 1:250 000, 1:50 000 and 1:10 000-scale datasets for England, Wales, and Scotland. Work continues to upgrade these. Geological maps are often the foundation for many other earth science-related maps and are of potential use to a wide range of end users. This dataset uses the themes:

    Bedrock Geology Superficial Geology Linear features (faults)

    More information on the BGS 625k Geology Dataset can be found on the BGS website.  The 625k Geology data can also be viewed alongside other BGS datasets in the GeoIndex viewer. The currency of this data is August 2022, while there are no planned regular updates, BGS continuously reviews its data products and will release new versions of the BGS Geology 625k when available.

  20. BGS 625k Geology

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    • +1more
    Updated Jun 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2022). BGS 625k Geology [Dataset]. https://data.catchmentbasedapproach.org/datasets/bgs::bgs-625k-geology
    Explore at:
    Dataset updated
    Jun 26, 2022
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    Area covered
    Description

    The Feature Layer made available to the Living Atlas has been adapted from the 625k Geology dataset freely available from the BGS website. The attribution and labels of the geological areas (or polygons) have been simplified to make the data more available to a wider audience. The dataset is aimed at students with an interest in Earth Sciences and amateur geologists who want to find out more. The LEX_RCS & LEX_ROCK codes have been preserved to allow users to reference the layers to to the 625k Geology Dataset.

    About BGS Geology 625k:

    BGS Geology 625k is a generalised digital geological map dataset based on BGS’s published poster maps of the UK (north and south). Bedrock-related themes were created by generalisation of 1:50 000 data to make the 2007 fifth edition bedrock geology map. Superficial geology-related themes were digitised from the 1977 first edition Quaternary map (north and south). Many BGS geology maps are now available digitally. The Digital Geological Map of Great Britain project (formerly known as DiGMapGB) has prepared 1:625 000, 1:250 000, 1:50 000 and 1:10 000-scale datasets for England, Wales, and Scotland. Work continues to upgrade these. Geological maps are often the foundation for many other earth science-related maps and are of potential use to a wide range of end users. This dataset uses the themes:

    Bedrock Geology Superficial Geology Linear features (faults)

    More information on the BGS 625k Geology Dataset can be found on the BGS website.  The 625k Geology data can also be viewed alongside other BGS datasets in the GeoIndex viewer. The currency of this data is August 2022, while there are no planned regular updates, BGS continuously reviews its data products and will release new versions of the BGS Geology 625k when available.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
Organization logo

Forest proximate people - 5km cutoff distance (Global - 100m)

Explore at:
http, wmtsAvailable download formats
Dataset updated
Oct 24, 2022
Dataset provided by
Food and Agriculture Organizationhttp://fao.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

Contact points:

Maintainer: Leticia Pina

Maintainer: Sarah E., Castle

Data lineage:

The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

References:

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

Online resources:

GEE asset for "Forest proximate people - 5km cutoff distance"

Search
Clear search
Close search
Google apps
Main menu