Facebook
TwitterBy dskl [source]
Moreover it also reveals various engagement metrics such as the number of views the video has received, likes and dislikes it has garnered from viewership. Additionally information related to comment count on particular videos enables analysis regarding viewer interaction and response. Furthermore this dataset describes whether comments or ratings are disabled for a particular video allowing examination into how these factors impact engagement.
By exploring this dataset in-depth marketers can gain valuable insights into identifying trends in content popularity across different countries while taking into account timing considerations based on published day of week. It also opens up avenues for analyzing public sentiment towards specific videos based on likes vs dislikes ratios and comment count which further aids in devising suitable marketing strategies.
Overall,this informative dataset serves as an invaluable asset for researchers,data analysts,and marketers alike who strive to gain deeper understanding about trending video patterns,relevant metrics influencing content virality,factors dictating viewer sentiments,and exploring new possibilities within digital marketing space leveraging YouTube's wide reach
How to Use This Dataset: A Guide
In this guide, we will walk you through the different columns in the dataset and provide insights on how you can explore the popularity and engagement of these trending videos. Let's dive in!
Column Descriptions:
- title: The title of the video.
- channel_title: The title of the YouTube channel that published the video.
- publish_date: The date when the video was published on YouTube.
- time_frame: The duration of time (e.g., 1 day, 6 hours) that the video has been trending on YouTube.
- published_day_of_week: The day of week (e.g., Monday) when the video was published.
- publish_country: The country where the video was published.
- tags: The tags or keywords associated with the video.
- views: The number of views received by a particular video
- likes: Number o likes received per each videos
- dislike: Number dislikes receives per an individual vidoe 11.comment_count: number of comments
Popular Video Insights:
To gain insights into popular videos based on this dataset, you can focus your analysis using these columns:
title, channel_title, publish_date, time_frame, and** publish_country**.
By analyzing these attributes together with other engagement metrics such as views ,likes,**dislikes,**comments),comment_count you can identify trends in what type content is most popular both globally or within specific countries.
For instance: - You could analyze which channels are consistently publishing trending videos - Explore whether certain types of titles or tags are more likely to attract views and engagement. - Determine if certain days of the week or time frames have a higher likelihood of trending videos being published.
Engagement Insights:
To explore user engagement with the trending videos, you can focus your analysis on these columns:
likes, dislikes, comment_count
By analyzing these attributes you can get insights into how users are interacting with the content. For example: - You could compare the like and dislike ratios to identify positively received videos versus those that are more controversial. - Analyze comment counts to understand how users are engaging with the content and whether comments being disabled affects overall
- Analyzing the popularity and engagement of trending videos: By analyzing the number of views, likes, dislikes, and comments, we can understand which types of videos are popular among YouTube users. We can also examine factors such as comment count and ratings disabled to see how viewers engage with trending videos.
- Understanding video trends across different countries: By examining the publish country column, we can compare the popularity of trending videos in different countries. This can help content creators or marketers understand regional preferences and tailor their content strategy accordingly.
- Studying the impact of video attributes on engagement: By exploring the relationship between video attributes (such as title, tags, publish day) and engagement metrics (views, likes), we can identify patterns or trends that influence a video's success on YouTube. This information can be...
Facebook
TwitterContext
This dataset represents real performance metrics of content on a YouTube channel. Each row seems to correspond to an individual video or campaign, with various KPIs (Key Performance Indicators) like views, watch time, reach, CTR, engagement, and earnings. The dataset can be used for YouTube performance analysis, influencer marketing evaluation, or content strategy optimization.
Name
Date : Date of video publishing or performance snapshot
Video Title : Title or name of the video content
Platform : Social platform, likely YouTube
Influencer Name : Name of the content creator/influencer
Subscribers : Total subscriber count at the time
Views : Total video views
Watch Time (Hours) : Total watch time in hours
Average View Duration : Average watch duration per viewer
Reach : Unique accounts reached
Click Through Rate (%) : CTR for the video thumbnail
Likes : Number of likes received
Comments : Number of comments
Shares : Number of shares
Revenue : Revenue or earnings from video (AdSense or influencer payout)
Use Cases
Performance monitoring of YouTube content
ROI and ROAS analysis for influencer campaigns
A/B testing for video titles/thumbnails
Trend identification across different video types
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**Trending on YouTube ** Trending helps viewers see what’s happening on YouTube and in the world. Trending aims to surface videos and shorts that a wide range of viewers would find interesting. Some trends are predictable, like a new song from a popular artist or a new movie trailer. Others are surprising, like a viral video.
Trending isn't personalized and displays the same list of trending videos to all viewers in the same country, which is why you may see videos in Trending that aren’t in the same language as your browser. However, in India, Trending displays a list of results for each of the 9 most common Indic languages.
SOURCE The data has been scrapped from "Mendeley.com". The source of this file ishttps://data.mendeley.com/datasets/7pkbvjtnxm/1/files/e7763107-45e9-4613-8c81-146e6a272266 Converted the data to csv file to use it in kaggle ../input/youtube-vdos/youtube trending videos dataset.csv
The data contains following columns .
* ) Position (int type) - An index column which gives the position of the channel in youtube channel
1) Channel Id ( Stirng ) - ID of the youtube channel
2) Channel Title ( String ) - Youtube channel title
3) Video Id (String) - ID of video in the youtube channel
4) Published At (String) - date of the video published at
5) Video Title (String ) - Title of the video
6) Video Description (String) - Description of the video(what the video is about)
6 Video Category Id ( int type) - Category of the video in youtube channel
7 Video Category Label (String) - type of category the video belongs
8 Duration (String ) - duration of the video
9 Duration Sec ( int type) - Duration of video in seconds
10 Dimension (String) - Dimension of the video (2D , Hd)
11 Definition (String) - Defining the video
12 Caption (bool ) - Boolean type caption (True or False)
13 Licensed Content (float Type)
14 View Count ( int type) - number of people viewed the video
15 Like Count (float) - Number of likes the channel got
16 Dislike Count (float) - Number of dislikes the channel got
17 Favorite Count ( int type) - Number of people marked as favourite
18 Comment Count (float) - Number of people commented on the video
Facebook
TwitterThe dataset contains detailed information on some of the most popular English media channels on Youtube. From channel overview to statistics of the top 50 videos of each channel, here is a description of all the columns of the two datasets.
Mainstream Media Statistics
Top50_viewed_video_from_each_channels
Inspirations
Data is scraped using Youtube API, feel free to use the data as long as it copes with the term of uses of Youtube. Something you can do with the dataset may be to analysis what news are of people's interest or to watch some of the most viewed news in the world to stay close with the society.
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterComprehensive YouTube channel statistics for The People Profiles, featuring 1,590,000 subscribers and 248,033,430 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category and is based in GB. Track 391 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.
Facebook
TwitterHow much time do people spend on social media?
As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Facebook
TwitterComprehensive ranking dataset of the top 100 YouTube channels from United States. This dataset features 100 channels with detailed statistics including subscriber counts, total video views, video count, and global rankings. The leading channel has 452,000,000 subscribers and 101,598,825,577 total views. Each entry includes comprehensive metrics to analyze channel performance, growth trends, and competitive positioning. This dataset is regularly updated to reflect the latest YouTube channel statistics and ranking changes, providing valuable insights for content creators, marketers, and researchers analyzing YouTube ecosystem trends and channel performance benchmarks.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
YouTube was created in 2005, with the first video – Me at the Zoo - being uploaded on 23 April 2005. Since then, 1.3 billion people have set up YouTube accounts. In 2018, people watch nearly 5 billion videos each day. People upload 300 hours of video to the site every minute.
According to 2016 research undertaken by Pexeso, music only accounts for 4.3% of YouTube’s content. Yet it makes 11% of the views. Clearly, an awful lot of people watch a comparatively small number of music videos. It should be no surprise, therefore, that the most watched videos of all time on YouTube are predominantly music videos.
On August 13, BTS became the most-viewed artist in YouTube history, accumulating over 26.7 billion views across all their official channels. This count includes all music videos and dance practice videos.
Justin Bieber and Ed Sheeran now hold the records for second and third-highest views, with over 26 billion views each.
Currently, BTS’s most viewed videos are their music videos for “**Boy With Luv**,” “**Dynamite**,” and “**DNA**,” which all have over 1.4 billion views.
Headers of the Dataset Total = Total views (in millions) across all official channels Avg = Current daily average of all videos combined 100M = Number of videos with more than 100 million views
Facebook
TwitterDuring a January 2024 global survey among marketers, nearly 60 percent reported plans to increase their organic use of YouTube for marketing purposes in the following 12 months. LinkedIn and Instagram followed, respectively mentioned by 57 and 56 percent of the respondents intending to use them more. According to the same survey, Facebook was the most important social media platform for marketers worldwide.
Facebook
TwitterThe global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Facebook
TwitterAs of February 2025, it was found that around 14.1 percent of TikTok's global audience were women between the ages of 18 and 24 years, while male users of the same age formed approximately 16.6 percent of the platform's audience. The online audience of the popular social video platform was further composed of 14.6 percent of female users aged between 25 and 34 years, and 20.7 percent of male users in the same age group.
Facebook
TwitterI've been creating videos on YouTube since November of 2017 (https://www.youtube.com/c/KenJee1) with the mission of making data science accessible to more people. One of the best ways to do this is to tell stories and working on projects. This is my attempt at my first community project. I am making my YouTube data available for everyone to help better understand the growth of my YouTube community and think about ways that it could be improved! I would love for everyone in the community feel like they had some hand in contributing to the channel.
Announcement Video: https://youtu.be/YPph59-rTxA
I will be sharing my favorite projects in a few of my videos (with permission of course), and would also like to give away a few small prizes to the top featured notebooks. I hope you have fun with the analysis, I'm interested in seeing what you find in the data!
For those looking for a place to start, some things I'm thinking about are: - What are the themes of the comment data? - What types of video titles and thumbnails drive the most traffic? - Who is my core audience and what are they interested in? - What types of videos have lead to the most growth? - What type of content are people engaging with the most or watching the longest?
Some advanced projects could be: - Creating a chat bot to respond to common comments with videos where I have addressed a topic - Pulling sentiment from thumbnails and titles and comparing that with performance
Data I would like to add over time - Video descriptions - Video subtitles - Actual video data
There are four files in this repo. The relevant data included in most of them is from Nov 2017 - Jan 2022. I gathered some of this data via the YouTube API and the rest from my specific analytics.
1) Aggregated Metrics By Video - This has all the topline metrics from my channel from its start (around 2015 to Jan 22 2022). I didn't post my first video until around 2) Aggregated Metrics By Video with Country and Subscriber Status - This has the same data as aggregated metrics by video, but it includes dimensions for which country people are viewing from and if the viewers are subscribed to the channel or not. 3) Video Performance Over Time - This has the daily data from each of my videos. 4) All Comments - This is all of my comment data gathered from the YouTube API. I have anonymized the users so don't worry about your name showing up!
This obviously wouldn't be possible without all of the wonderful people who watch and interact with my videos! I'm incredibly grateful for you all and I'm so happy I can share this project with you!
I collected this data from the YouTube API and through my own google analytics. Thus use of it must uphold the YouTube API's terms of service: https://developers.google.com/youtube/terms/api-services-terms-of-service
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Summary
This dataset consists of nearly 5 hours of video from over 40 Creative Commons-licensed videos on YouTube. The videos contain the voices of more than 100 different people. The audio files have been resampled to 16 kHz. The videos have been divided into chunks of up to 25 seconds. This dataset is intended for developing Turkish STT (Speech-to-Text) models.
Datasets Preparetion
The audio files and transcript data were scraped from YouTube. The scraped… See the full description on the dataset page: https://huggingface.co/datasets/Anilosan15/YouTube_Video_Transkriptleri_TR.
Facebook
TwitterComprehensive ranking dataset of the top 100 YouTube channels in the Travel category. This dataset features 100 channels with detailed statistics including subscriber counts, total video views, video count, and global rankings. The leading channel has 20,500,000 subscribers and 9,301,426,686 total views. Each entry includes comprehensive metrics to analyze channel performance, growth trends, and competitive positioning. This dataset is regularly updated to reflect the latest YouTube channel statistics and ranking changes, providing valuable insights for content creators, marketers, and researchers analyzing YouTube ecosystem trends and channel performance benchmarks.
Facebook
TwitterComprehensive YouTube channel statistics for Epic Family Road Trip, featuring 283,000 subscribers and 39,152,659 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category and is based in CA. Track 578 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.
Facebook
TwitterComprehensive ranking dataset of the top 100 YouTube channels from United Kingdom. This dataset features 100 channels with detailed statistics including subscriber counts, total video views, video count, and global rankings. The leading channel has 42,400,000 subscribers and 32,645,209,430 total views. Each entry includes comprehensive metrics to analyze channel performance, growth trends, and competitive positioning. This dataset is regularly updated to reflect the latest YouTube channel statistics and ranking changes, providing valuable insights for content creators, marketers, and researchers analyzing YouTube ecosystem trends and channel performance benchmarks.
Facebook
TwitterComprehensive ranking dataset of the top 100 YouTube channels from Germany. This dataset features 100 channels with detailed statistics including subscriber counts, total video views, video count, and global rankings. The leading channel has 36,000,000 subscribers and 47,579,063,650 total views. Each entry includes comprehensive metrics to analyze channel performance, growth trends, and competitive positioning. This dataset is regularly updated to reflect the latest YouTube channel statistics and ranking changes, providing valuable insights for content creators, marketers, and researchers analyzing YouTube ecosystem trends and channel performance benchmarks.
Facebook
TwitterDuring a 2024 survey among marketers worldwide, around 86 percent reported using Facebook for marketing purposes. Instagram and LinkedIn followed, respectively mentioned by 79 and 65 percent of the respondents.
The global social media marketing segment
According to the same study, 59 percent of responding marketers intended to increase their organic use of YouTube for marketing purposes throughout that year. LinkedIn and Instagram followed with similar shares, rounding up the top three social media platforms attracting a planned growth in organic use among global marketers in 2024. Their main driver is increasing brand exposure and traffic, which led the ranking of benefits of social media marketing worldwide.
Social media for B2B marketing
Social media platform adoption rates among business-to-consumer (B2C) and business-to-business (B2B) marketers vary according to each subsegment's focus. While B2C professionals prioritize Facebook and Instagram – both run by Meta, Inc. – due to their popularity among online audiences, B2B marketers concentrate their endeavors on Microsoft-owned LinkedIn due to its goal to connect people and companies in a corporate context.
Facebook
TwitterComprehensive YouTube channel statistics for JD Sports, featuring 577,000 subscribers and 354,560,411 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Entertainment category. Track 1,467 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.
Facebook
TwitterBy dskl [source]
Moreover it also reveals various engagement metrics such as the number of views the video has received, likes and dislikes it has garnered from viewership. Additionally information related to comment count on particular videos enables analysis regarding viewer interaction and response. Furthermore this dataset describes whether comments or ratings are disabled for a particular video allowing examination into how these factors impact engagement.
By exploring this dataset in-depth marketers can gain valuable insights into identifying trends in content popularity across different countries while taking into account timing considerations based on published day of week. It also opens up avenues for analyzing public sentiment towards specific videos based on likes vs dislikes ratios and comment count which further aids in devising suitable marketing strategies.
Overall,this informative dataset serves as an invaluable asset for researchers,data analysts,and marketers alike who strive to gain deeper understanding about trending video patterns,relevant metrics influencing content virality,factors dictating viewer sentiments,and exploring new possibilities within digital marketing space leveraging YouTube's wide reach
How to Use This Dataset: A Guide
In this guide, we will walk you through the different columns in the dataset and provide insights on how you can explore the popularity and engagement of these trending videos. Let's dive in!
Column Descriptions:
- title: The title of the video.
- channel_title: The title of the YouTube channel that published the video.
- publish_date: The date when the video was published on YouTube.
- time_frame: The duration of time (e.g., 1 day, 6 hours) that the video has been trending on YouTube.
- published_day_of_week: The day of week (e.g., Monday) when the video was published.
- publish_country: The country where the video was published.
- tags: The tags or keywords associated with the video.
- views: The number of views received by a particular video
- likes: Number o likes received per each videos
- dislike: Number dislikes receives per an individual vidoe 11.comment_count: number of comments
Popular Video Insights:
To gain insights into popular videos based on this dataset, you can focus your analysis using these columns:
title, channel_title, publish_date, time_frame, and** publish_country**.
By analyzing these attributes together with other engagement metrics such as views ,likes,**dislikes,**comments),comment_count you can identify trends in what type content is most popular both globally or within specific countries.
For instance: - You could analyze which channels are consistently publishing trending videos - Explore whether certain types of titles or tags are more likely to attract views and engagement. - Determine if certain days of the week or time frames have a higher likelihood of trending videos being published.
Engagement Insights:
To explore user engagement with the trending videos, you can focus your analysis on these columns:
likes, dislikes, comment_count
By analyzing these attributes you can get insights into how users are interacting with the content. For example: - You could compare the like and dislike ratios to identify positively received videos versus those that are more controversial. - Analyze comment counts to understand how users are engaging with the content and whether comments being disabled affects overall
- Analyzing the popularity and engagement of trending videos: By analyzing the number of views, likes, dislikes, and comments, we can understand which types of videos are popular among YouTube users. We can also examine factors such as comment count and ratings disabled to see how viewers engage with trending videos.
- Understanding video trends across different countries: By examining the publish country column, we can compare the popularity of trending videos in different countries. This can help content creators or marketers understand regional preferences and tailor their content strategy accordingly.
- Studying the impact of video attributes on engagement: By exploring the relationship between video attributes (such as title, tags, publish day) and engagement metrics (views, likes), we can identify patterns or trends that influence a video's success on YouTube. This information can be...