31 datasets found
  1. Global Population Estimates

    • kaggle.com
    zip
    Updated Aug 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2017). Global Population Estimates [Dataset]. https://www.kaggle.com/datasets/theworldbank/global-population-estimates
    Explore at:
    zip(16207650 bytes)Available download formats
    Dataset updated
    Aug 14, 2017
    Dataset authored and provided by
    World Bank
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    This database presents population and other demographic estimates and projections from 1960 to 2050. They are disaggregated by age-group and gender and cover approximately 200 economies.

    This dataset was kindly made available by the World Bank.

  2. Global Population Data

    • kaggle.com
    zip
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ramzan (2025). Global Population Data [Dataset]. https://www.kaggle.com/datasets/iamramzanai/global-population-data
    Explore at:
    zip(4456 bytes)Available download formats
    Dataset updated
    Jan 15, 2025
    Authors
    Muhammad Ramzan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    List of Countries and Dependencies by Population

    This dataset contains population-related information for countries and dependencies, scraped from Wikipedia. The dataset includes the following columns:

    1. Location: The country or dependency name.
    2. Population: Total population count.
    3. % of World: The percentage of the world's population this country or dependency represents.
    4. Date: The date of the population estimate.
    5. Source: Whether the source is official or derived from the United Nations.

    Dataset Summary

    This dataset provides a comprehensive overview of population statistics by country and dependency. It is ideal for researchers, data scientists, and analysts who need accurate and up-to-date population data.

    Dataset Features:

    • Location: Textual description of the country or territory.
    • Population: Integer value representing the population size.
    • % of World: Float representing the percentage of the world's total population.
    • Date: The date on which the population estimate was recorded.
    • Source: A textual description of the data source (e.g., United Nations or official national statistics).

    Source

    The dataset was scraped from the Wikipedia page: List of countries and dependencies by population.

    Licensing

    This dataset is based on data available under the Creative Commons Attribution-ShareAlike License.

    Splits

    The dataset has one split: - train: Contains all records from the table (approximately 200 entries).

    Examples

    Here's a sample record from the dataset:

    LocationPopulation% of WorldDateSource
    China1,411,778,72417.82%2023-01-01Official national data
    India1,393,409,03817.59%2023-01-01United Nations estimate
    Tuvalu11,9310.00015%2023-01-01United Nations estimate

    Usage

    You can load this dataset using the Hugging Face datasets library:

    from datasets import load_dataset
    
    dataset = load_dataset("username/dataset_name")
    
  3. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  4. Global Suicide Indicators

    • kaggle.com
    zip
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Global Suicide Indicators [Dataset]. https://www.kaggle.com/datasets/andrewmvd/suicide-dataset
    Explore at:
    zip(24525 bytes)Available download formats
    Dataset updated
    Sep 8, 2020
    Authors
    Larxel
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Abstract

    Explore global statistics on a subject that claims 800,000 lives each year.

    About this dataset

    Context

    Suicide is a major cause of death in the world, claiming around 800,000 lives each year. It is ranked as the 14th leading cause of death worldwide as of 2017 and on average men are twice as likely to fall victim to it. It also one of the leading causes of death on young people and older people are at a higher risk as well. Source

    Notes

    This dataset contains data from 200+ countries on the topic of suicide and mental health infrastructure. It was created by extracting the latest data from WHO and combining it into a single dataset. Variables available range from Country, Sex, Mental health infrastructure and personnel and finally Suicide Rate (amount of suicides per 100k people). Note that the suicide rate is age-standardized, as to not bias comparisons between countries with different age compositions.

    How to use

    • Explore Suicide rates and their associated trends, as well as the effects of infrastructure and personnel on the suicide rates.
    • Forecast suicide rates

    Acknowledgements

    If you use this dataset in your research, please credit the authors.

    Citation

    @misc{Global Health Observatory data repository, title={Mental Health}, url={https://apps.who.int/gho/data/node.main.MENTALHEALTH?lang=en}, journal={WHO} }

    License

    CC BY NC SA IGO 3.0

    Splash banner

    Photo by Fernando on Unsplash

    Splash icon

    Icon by photo3idea_studio available on Flaticon.

    More Datasets

  5. World Bank: GHNP Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

    Update Frequency: Biannual

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

    https://cloud.google.com/bigquery/public-data/world-bank-hnp

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Citation: The World Bank: Health Nutrition and Population Statistics

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What’s the average age of first marriages for females around the world?

  6. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  7. Countries with the most Facebook users 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Countries with the most Facebook users 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users?

                  There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
    
                  Facebook – the most used social media
    
                  Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
    
                  Facebook usage by device
                  As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
    
  8. ERA5 monthly averaged data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.f17050d7
    Explore at:
    gribAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on single levels from 1940 to present".

  9. Latest World News 2025

    • kaggle.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kushal Manage (2025). Latest World News 2025 [Dataset]. https://www.kaggle.com/datasets/kushalmanage/latest-world-news-2025
    Explore at:
    zip(26972 bytes)Available download formats
    Dataset updated
    Jun 19, 2025
    Authors
    Kushal Manage
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    Dataset Overview

    Contains about 200 of the latest major global news and information

    Ethically Collected Data

    Data have been ethically collected from various sites. Sources are mentioned in the dataset. Please use for educational purposes only.

  10. UCSD Anomaly Detection Dataset

    • kaggle.com
    zip
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karthik nm1 (2023). UCSD Anomaly Detection Dataset [Dataset]. https://www.kaggle.com/datasets/karthiknm1/ucsd-anomaly-detection-dataset/code
    Explore at:
    zip(735747015 bytes)Available download formats
    Dataset updated
    Jun 3, 2023
    Authors
    Karthik nm1
    Description

    UCSD Anomaly Detection Dataset

    The UCSD Anomaly Detection Dataset was acquired with a stationary camera mounted at an elevation, overlooking pedestrian walkways. The crowd density in the walkways was variable, ranging from sparse to very crowded. In the normal setting, the video contains only pedestrians. Abnormal events are due to either:

    the circulation of non pedestrian entities in the walkways anomalous pedestrian motion patterns Commonly occurring anomalies include bikers, skaters, small carts, and people walking across a walkway or in the grass that surrounds it. A few instances of people in wheelchair were also recorded. All abnormalities are naturally occurring, i.e. they were not staged for the purposes of assembling the dataset. The data was split into 2 subsets, each corresponding to a different scene. The video footage recorded from each scene was split into various clips of around 200 frames.

    Peds1: clips of groups of people walking towards and away from the camera, and some amount of perspective distortion. Contains 34 training video samples and 36 testing video samples.

    Peds2: scenes with pedestrian movement parallel to the camera plane. Contains 16 training video samples and 12 testing video samples.

    For each clip, the ground truth annotation includes a binary flag per frame, indicating whether an anomaly is present at that frame. In addition, a subset of 10 clips for Peds1 and 12 clips for Peds2 are provided with manually generated pixel-level binary masks, which identify the regions containing anomalies. This is intended to enable the evaluation of performance with respect to ability of algorithms to localize anomalies.

  11. Social media as a news outlet worldwide 2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Watson, Social media as a news outlet worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Amy Watson
    Description

    During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.

                  Social media: trust and consumption
    
                  Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
    
                  What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
                  Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
                  Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
    
  12. World Population Working In Different Sectors

    • kaggle.com
    zip
    Updated Apr 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ajaypal Singh (2021). World Population Working In Different Sectors [Dataset]. https://www.kaggle.com/ajaypalsinghlo/world-population-working-in-different-sectors
    Explore at:
    zip(85861 bytes)Available download formats
    Dataset updated
    Apr 10, 2021
    Authors
    Ajaypal Singh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    I always wanted to access a data set that was related to the world’s population working in different sectors . This Data is from 1991 to 2019 of more than 200+ countries .

  13. Wonders of the World Image Dataset

    • kaggle.com
    zip
    Updated May 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bala Baskar (2022). Wonders of the World Image Dataset [Dataset]. https://www.kaggle.com/datasets/balabaskar/wonders-of-the-world-image-classification
    Explore at:
    zip(453078359 bytes)Available download formats
    Dataset updated
    May 3, 2022
    Authors
    Bala Baskar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Introduction

    The New 7 Wonders of the World was a campaign started in 2000 to choose Wonders of the World from a selection of 200 existing monuments. The popularity poll via free Web-based voting and small amounts of telephone voting was led by Canadian-Swiss Bernard Weber and organized by the New 7 Wonders Foundation (N7W) based in Zurich, Switzerland, with winners announced on 7 July 2007 in Lisbon, at Estádio da Luz. The poll was considered unscientific partly because it was possible for people to cast multiple votes.

    Context

    When someday, if we plan to go on a World tour, obviously there is going to be a bucket list of wonders or places around the world, that we wish to visit. Here, we have one set of "Wonders of the World" images scraped from Google Images. Let us use our deep learning skills to build multiclass classification to identify the place in the images.

    Data Preparation

    This dataset contains a total of 3846 images placed in folders, with which each folder representing one of the top new wonders of the world. Below is the list of wonders with images extracted from Google Images.

    • Venezuela Angel Falls
    • Taj Mahal
    • Stonehenge
    • Statue of Liberty
    • Chichen Itz
    • Christ the Redeemer
    • Pyramids of Giza
    • Eiffel Tower
    • Great Wall of China
    • Burj Khalifa
    • Roman Colosseum
    • Machu Pichu
  14. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.

                  Instagram users
    
                  With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
    
                  Instagram features
    
                  One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
                  As of the second quarter of 2021, Snapchat had 293 million daily active users.
    
  15. World Population Growth

    • kaggle.com
    zip
    Updated Nov 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohaiminul Islam (2020). World Population Growth [Dataset]. https://www.kaggle.com/mohaiminul101/population-growth-annual
    Explore at:
    zip(91171 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Mohaiminul Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Context

    In demographics, the world population is the total number of humans currently living, and was estimated to have reached 7,800,000,000 people as of March 2020. It took over 2 million years of human history for the world's population to reach 1 billion, and only 200 years more to reach 7 billion. The world population has experienced continuous growth following the Great Famine of 1315–1317 and the end of the Black Death in 1350, when it was near 370 million. The highest global population growth rates, with increases of over 1.8% per year, occurred between 1955 and 1975 – peaking to 2.1% between 1965 and 1970.[7] The growth rate declined to 1.2% between 2010 and 2015 and is projected to decline further in the course of the 21st century. However, the global population is still increasing[8] and is projected to reach about 10 billion in 2050 and more than 11 billion in 2100.

    Content

    Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. Annual population growth rate. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.

    Statistical Concept and Methodology

    Total population growth rates are calculated on the assumption that rate of growth is constant between two points in time. The growth rate is computed using the exponential growth formula: r = ln(pn/p0)/n, where r is the exponential rate of growth, ln() is the natural logarithm, pn is the end period population, p0 is the beginning period population, and n is the number of years in between. Note that this is not the geometric growth rate used to compute compound growth over discrete periods. For information on total population from which the growth rates are calculated, see total population (SP.POP.TOTL).

    Acknowledgements

    Derived from total population. Population source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision, ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme.

  16. Global Health

    • kaggle.com
    zip
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). Global Health [Dataset]. https://www.kaggle.com/bigquery/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 18, 2020
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries

    Sample Query

    What’s the average age of first marriages for females around the world? This query retrieves the average age of first marriages for females by country. Females are used because there is a larger age spread in first marriages for females

    SELECT country_name, ROUND(AVG(value),2) AS average FROM bigquery-public-data.world_bank_health_population.health_nutrition_population WHERE indicator_code = "SP.DYN.SMAM.FE" AND year > 2000 GROUP BY country_name ORDER BY average

  17. Global Country Information Dataset 2023

    • kaggle.com
    zip
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
    Explore at:
    zip(24063 bytes)Available download formats
    Dataset updated
    Jul 8, 2023
    Authors
    Nidula Elgiriyewithana ⚡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    DOI

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.

    Data Source: This dataset was compiled from multiple data sources

    If this was helpful, a vote is appreciated ❤️ Thank you 🙂

  18. nemotron-3-8b-base-4k

    • kaggle.com
    zip
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serhii Kharchuk (2024). nemotron-3-8b-base-4k [Dataset]. https://www.kaggle.com/datasets/serhiikharchuk/nemotron-3-8b-base-4k
    Explore at:
    zip(13688476176 bytes)Available download formats
    Dataset updated
    Aug 31, 2024
    Authors
    Serhii Kharchuk
    Description

    Nemotron-3-8B-Base-4k Model Overview License

    The use of this model is governed by the NVIDIA AI Foundation Models Community License Agreement. Description

    Nemotron-3-8B-Base-4k is a large language foundation model for enterprises to build custom LLMs. This foundation model has 8 billion parameters, and supports a context length of 4,096 tokens. Nemotron-3-8B-Base-4k is part of Nemotron-3, which is a family of enterprise ready generative text models compatible with NVIDIA NeMo Framework. For other models in this collection, see the collections page.

    NVIDIA NeMo is an end-to-end, cloud-native platform to build, customize, and deploy generative AI models anywhere. It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI. To get access to NeMo Framework, please sign up at this link. References

    Announcement Blog Model Architecture

    Architecture Type: Transformer

    Network Architecture: Generative Pre-Trained Transformer (GPT-3) Software Integration

    Runtime Engine(s): NVIDIA AI Enterprise

    Toolkit: NeMo Framework

    To get access to NeMo Framework, please sign up at this link. See NeMo inference container documentation for details on how to setup and deploy an inference server with NeMo.

    Sample Inference Code:

    from nemo.deploy import NemoQuery

    In this case, we run inference on the same machine

    nq = NemoQuery(url="localhost:8000", model_name="Nemotron-3-8B-4K")

    output = nq.query_llm(prompts=["The meaning of life is"], max_output_token=200, top_k=1, top_p=0.0, temperature=0.1) print(output)

    Supported Hardware:

    H100
    A100 80GB, A100 40GB
    

    Model Version(s)

    Nemotron-3-8B-base-4k-BF16-1 Dataset & Training

    The model uses a learning rate of 3e-4 with a warm-up period of 500M tokens and a cosine learning rate annealing schedule for 95% of the total training tokens. The decay stops at a minimum learning rate of 3e-5. The model is trained with a sequence length of 4096 and uses FlashAttention’s Multi-Head Attention implementation. 1,024 A100s were used for 19 days to train the model.

    NVIDIA models are trained on a diverse set of public and proprietary datasets. This model was trained on a dataset containing 3.8 Trillion tokens of text. The dataset contains 53 different human languages (including English, German, Russian, Spanish, French, Japanese, Chinese, Italian, and Dutch) and 37 programming languages. The model also uses the training subsets of downstream academic benchmarks from sources like FLANv2, P3, and NaturalInstructions v2. NVIDIA is committed to the responsible development of large language models and conducts reviews of all datasets included in training. Evaluation Task Num-shot Score MMLU* 5 54.4 WinoGrande 0 70.9 Hellaswag 0 76.4 ARC Easy 0 72.9 TyDiQA-GoldP** 1 49.2 Lambada 0 70.6 WebQS 0 22.9 PiQA 0 80.4 GSM8K 8-shot w/ maj@8 39.4

    • The calculation of MMLU follows the original implementation. See Hugging Face’s explanation of different implementations of MMLU.

    ** The languages used are Arabic, Bangla, Finnish, Indonesian, Korean, Russian and Swahili. Intended use

    This is a completion model. For best performance, users are encouraged to customize the completion model using NeMo Framework suite of customization tools including Parameter-Efficient Fine-Tuning (P-tuning, Adapters, LoRA), and SFT/RLHF. For chat use cases, please consider using Nemotron-3-8B chat variants. Ethical use

    Technology can have a profound impact on people and the world, and NVIDIA is committed to enabling trust and transparency in AI development. NVIDIA encourages users to adopt principles of AI ethics and trustworthiness to guide your business decisions by following the guidelines in the NVIDIA AI Foundation Models Community License Agreement. Limitations

    The model was trained on data that contains toxic language and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.
    The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
    
  19. 🌍 World Education Dataset 📚

    • kaggle.com
    zip
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bushra Qurban (2024). 🌍 World Education Dataset 📚 [Dataset]. https://www.kaggle.com/datasets/bushraqurban/world-education-dataset
    Explore at:
    zip(248507 bytes)Available download formats
    Dataset updated
    Nov 22, 2024
    Authors
    Bushra Qurban
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    Dataset Overview 📝

    The dataset includes the following key indicators, collected for over 200 countries:

    • Government Expenditure on Education (% of GDP): Shows the percentage of a country’s GDP allocated to education.
    • Literacy Rate (Adult Total): Represents the percentage of the population aged 15 and above who can read and write.
    • Primary Completion Rate: The percentage of children who complete their primary education within the official age group.
    • Pupil-Teacher Ratio (Primary and Secondary Education): Indicates the average number of students per teacher at the primary and secondary levels.
    • School Enrollment Rates (Primary, Secondary, Tertiary): Reflects the percentage of the relevant age group enrolled in schools across different education levels.

    Data Source 🌐

    World Bank: This dataset is compiled from the World Bank's educational database, providing reliable, updated statistics on educational progress worldwide.

    Potential Use Cases 🔍 This dataset is ideal for anyone interested in:

    Educational Research: Understanding how education spending and policies impact literacy, enrollment, and overall educational outcomes. Predictive Modeling: Building models to predict educational success factors, such as completion rates and literacy. Global Education Analysis: Analyzing trends in global education systems and how different countries allocate resources to education. Policy Development: Helping governments and organizations make data-driven decisions regarding educational reforms and funding.

    Key Questions You Can Explore 🤔

    How does government expenditure on education correlate with literacy rates and school enrollment across different regions? What are the trends in pupil-teacher ratios over time, and how do they affect educational outcomes? How do education indicators differ between low-income and high-income countries? Can we predict which countries will achieve universal primary education based on current trends?

    Important Notes ⚠️ - Missing Data: Some values may be missing for certain years or countries. Consider using techniques like forward filling or interpolation when working with time series models. - Data Limitations: This dataset provides global averages and may not capture regional disparities within countries.

  20. World Bank: International Debt Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: International Debt Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-intl-debt
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset contains both national and regional debt statistics captured by over 200 economic indicators. Time series data is available for those indicators from 1970 to 2015 for reporting countries.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_intl_debt

    https://cloud.google.com/bigquery/public-data/world-bank-international-debt

    Citation: The World Bank: International Debt Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What countries have the largest outstanding debt?

    https://cloud.google.com/bigquery/images/outstanding-debt.png" alt="enter image description here"> https://cloud.google.com/bigquery/images/outstanding-debt.png

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
World Bank (2017). Global Population Estimates [Dataset]. https://www.kaggle.com/datasets/theworldbank/global-population-estimates
Organization logo

Global Population Estimates

The World Bank's global population estimates

Explore at:
zip(16207650 bytes)Available download formats
Dataset updated
Aug 14, 2017
Dataset authored and provided by
World Bank
License

https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

Description

This database presents population and other demographic estimates and projections from 1960 to 2050. They are disaggregated by age-group and gender and cover approximately 200 economies.

This dataset was kindly made available by the World Bank.

Search
Clear search
Close search
Google apps
Main menu