100+ datasets found
  1. Mobile internet users worldwide 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet users worldwide 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.

  2. User mobile app interaction data

    • kaggle.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Moslemani (2025). User mobile app interaction data [Dataset]. https://www.kaggle.com/datasets/mohamedmoslemani/user-mobile-app-interaction-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohamed Moslemani
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset has been artificially generated to mimic real-world user interactions within a mobile application. It contains 100,000 rows of data, each row of which represents a single event or action performed by a synthetic user. The dataset was designed to capture many of the attributes commonly tracked by app analytics platforms, such as device details, network information, user demographics, session data, and event-level interactions.

    Key Features Included

    User & Session Metadata

    User ID: A unique integer identifier for each synthetic user. Session ID: Randomly generated session identifiers (e.g., S-123456), capturing the concept of user sessions. IP Address: Fake IP addresses generated via Faker to simulate different network origins. Timestamp: Randomized timestamps (within the last 30 days) indicating when each interaction occurred. Session Duration: An approximate measure (in seconds) of how long a user remained active. Device & Technical Details

    Device OS & OS Version: Simulated operating systems (Android/iOS) with plausible version numbers. Device Model: Common phone models (e.g., “Samsung Galaxy S22,” “iPhone 14 Pro,” etc.). Screen Resolution: Typical screen resolutions found in smartphones (e.g., “1080x1920”). Network Type: Indicates whether the user was on Wi-Fi, 5G, 4G, or 3G. Location & Locale

    Location Country & City: Random global locations generated using Faker. App Language: Represents the user’s app language setting (e.g., “en,” “es,” “fr,” etc.). User Properties

    Battery Level: The phone’s battery level as a percentage (0–100). Memory Usage (MB): Approximate memory consumption at the time of the event. Subscription Status: Boolean flag indicating if the user is subscribed to a premium service. User Age: Random integer ranging from teenagers to seniors (13–80). Phone Number: Fake phone numbers generated via Faker. Push Enabled: Boolean flag indicating if the user has push notifications turned on. Event-Level Interactions

    Event Type: The action taken by the user (e.g., “click,” “view,” “scroll,” “like,” “share,” etc.). Event Target: The UI element or screen component interacted with (e.g., “home_page_banner,” “search_bar,” “notification_popup”). Event Value: A numeric field indicating additional context for the event (e.g., intensity, count, rating). App Version: Simulated version identifier for the mobile application (e.g., “4.2.8”). Data Quality & “Noise” To better approximate real-world data, 1% of all fields have been intentionally “corrupted” or altered:

    Typos and Misspellings: Random single-character edits, e.g., “Andro1d” instead of “Android.” Missing Values: Some cells might be blank (None) to reflect dropped or unrecorded data. Random String Injections: Occasional random alphanumeric strings inserted where they don’t belong. These intentional discrepancies can help data scientists practice data cleaning, outlier detection, and data wrangling techniques.

    Usage & Applications

    Data Cleaning & Preprocessing: Ideal for practicing how to handle missing values, inconsistent data, and noise in a realistic scenario. Analytics & Visualization: Demonstrate user interaction funnels, session durations, usage by device/OS, etc. Machine Learning & Modeling: Suitable for building classification or clustering models (e.g., user segmentation, event classification). Simulation for Feature Engineering: Experiment with deriving new features (e.g., session frequency, average battery drain, etc.).

    Important Notes & Disclaimer

    Synthetic Data: All entries (users, device info, IPs, phone numbers, etc.) are artificially generated and do not correspond to real individuals. Privacy & Compliance: Since no real personal data is present, there are no direct privacy concerns. However, always handle synthetic data ethically.

  3. Number of smartphone users in the United States 2014-2029

    • statista.com
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of smartphone users in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/2711/us-smartphone-market/
    Explore at:
    Dataset updated
    May 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.

  4. Mobile internet usage reach in North America 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet usage reach in North America 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.

  5. Mobile internet penetration in Europe 2024, by country

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet penetration in Europe 2024, by country [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    Switzerland is leading the ranking by population share with mobile internet access , recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  6. Number of smartphone users worldwide 2014-2029

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of smartphone users worldwide 2014-2029 [Dataset]. https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.

  7. TechCorner Mobile Purchase & Engagement Data

    • kaggle.com
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shohinur Pervez Shohan (2025). TechCorner Mobile Purchase & Engagement Data [Dataset]. https://www.kaggle.com/datasets/shohinurpervezshohan/techcorner-mobile-purchase-and-engagement-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 23, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shohinur Pervez Shohan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    TechCorner Mobile Purchase & Engagement Data (2024-2025)

    Context

    TechCorner Mobile Sales & Customer Insights is a real-world dataset capturing 10 months of mobile phone sales transactions from a retail shop in Bangladesh. This dataset was designed to analyze customer location, buying behavior, and the impact of Facebook marketing efforts.

    The primary goal was to identify whether customers are from the local area (Rangamati Sadar, Inside Rangamati) or completely outside Rangamati. Since TechCorner operates a Facebook page, the dataset also includes insights into whether Facebook marketing is effectively reaching potential buyers.

    Additionally, the dataset helps in determining: ✔ How many customers are new vs. returning buyers ✔ If customers are followers of the shop’s Facebook page ✔ Whether a customer was recommended by an existing buyer

    This dataset is valuable for:

    Retail sales analysis to understand product demand fluctuations.
    
    Marketing impact measurement (Facebook engagement vs. actual purchase behavior).
    
    Customer segmentation (local vs. non-local buyers, social media influence, word-of-mouth impact).
    
    Sales trend analysis based on preferred phone models and price ranges.
    

    With a realistic, non-uniform distribution of daily sales and some intentional missing values, this dataset reflects actual retail business conditions rather than artificially smooth AI-generated data.

    Marketing & Customer Queries

    Does he/she Come from Facebook Page? → Whether the customer came from a Facebook page (Yes/No). Used to analyze Facebook marketing reach.
    
    Does he/she Followed Our Page? → Whether the customer is already a follower of the shop’s Facebook page (Yes/No). Helps measure brand loyalty and organic engagement.
    
    Did he/she buy any mobile before? → Whether the customer is a repeat buyer (Yes/No). Determines the percentage of returning customers.
    
    Did he/she hear of our shop before? → Whether the customer knew about the shop before purchasing (Yes/No). Identifies the impact of referrals or previous marketing efforts.
    
    Was this customer recommended by an old customer? → Whether an existing customer referred them to the shop (Yes/No). Helps evaluate the effectiveness of word-of-mouth marketing.
    

    Acknowledgements

    This dataset is derived from real-world mobile sales transactions recorded at TechCorner, a retail shop in Bangladesh. It accurately reflects customer purchasing behavior, pricing trends, and the effectiveness of Facebook marketing in driving sales. Special appreciation to TechCorner for providing comprehensive insights into daily sales patterns, customer demographics, and market dynamics.

    This dataset can be used for:

    📊 Predictive modeling of sales trends based on customer demographics and marketing channels. 📈 Marketing effectiveness analysis (impact of Facebook promotions vs. organic sales). 🔍 Clustering customers based on purchasing habits (new vs. returning buyers, Facebook users vs. walk-ins). 📌 Understanding demand for different smartphone brands in a local retail market. 🚀 Analyzing how word-of-mouth recommendations influence new customer acquisition.

    💡 Can you build a model to predict if a customer is likely to return? 💬 How effective is Facebook in driving actual sales compared to walk-ins? 🔍 Can we cluster customers based on behavior and brand preferences?

  8. High-Frequency Phone Survey on COVID-19 - World Bank LSMS Harmonized Dataset...

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jan 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malawi National Statistical Office (NSO) (2022). High-Frequency Phone Survey on COVID-19 - World Bank LSMS Harmonized Dataset - Malawi [Dataset]. https://catalog.ihsn.org/catalog/9901
    Explore at:
    Dataset updated
    Jan 3, 2022
    Dataset provided by
    National Statistical Office of Malawihttp://www.nsomalawi.mw/
    Authors
    Malawi National Statistical Office (NSO)
    Time period covered
    2019 - 2021
    Area covered
    Malawi
    Description

    Abstract

    To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.

    The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.

    Two harmonized datafiles are prepared for each survey. The two datafiles are: 1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales.
    2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    See “Malawi - Integrated Household Panel Survey 2010-2013-2016-2019 (Long-Term Panel, 102 EAs)” and “Malawi - High-Frequency Phone Survey on COVID-19” available in the Microdata Library for details.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    Malawi Integrated Household Panel Survey (IHPS) 2019 and Malawi High-Frequency Phone Survey on COVID-19 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).

    The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.

    Response rate

    See “Malawi - Integrated Household Panel Survey 2010-2013-2016-2019 (Long-Term Panel, 102 EAs)” and “Malawi - High-Frequency Phone Survey on COVID-19” available in the Microdata Library for details.

  9. h

    mobile-phone-ownership-for-african-countries

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electric Sheep, mobile-phone-ownership-for-african-countries [Dataset]. https://huggingface.co/datasets/electricsheepafrica/mobile-phone-ownership-for-african-countries
    Explore at:
    Dataset authored and provided by
    Electric Sheep
    Area covered
    Africa
    Description

    license: apache-2.0 tags: - africa - sustainable-development-goals - world-health-organization - development

      Individuals who own a mobile telephone (%)
    
    
    
    
    
      Dataset Description
    

    This dataset provides country-level data for the indicator "5.b.1 Individuals who own a mobile telephone (%)" across African nations, sourced from the World Health Organization's (WHO) data portal on Sustainable Development Goals (SDGs). The data is presented in a wide format, where each row… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/mobile-phone-ownership-for-african-countries.

  10. Web Data Commons Phones Dataset, Augmented Version, Fixed Splits

    • linkagelibrary.icpsr.umich.edu
    delimited
    Updated Nov 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Primpeli; Christian Bizer (2020). Web Data Commons Phones Dataset, Augmented Version, Fixed Splits [Dataset]. http://doi.org/10.3886/E127243V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Nov 23, 2020
    Dataset provided by
    University of Mannheim (Germany)
    Authors
    Anna Primpeli; Christian Bizer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Motivation: Entity Matching is the task of determining which records from different data sources describe the same real-world entity. It is an important task for data integration and has been the focus of many research works. A large number of entity matching/record linkage tasks has been made available for evaluating entity matching methods. However, the lack of fixed development and test splits as well as correspondence sets including both matching and non-matching record pairs hinders the reproducibility and comparability of benchmark experiments. In an effort to enhance the reproducibility and comparability of the experiments, we complement existing entity matching benchmark tasks with fixed sets of non-matching pairs as well as fixed development and test splits. Dataset Description: An augmented version of the wdc phones dataset for benchmarking entity matching/record linkage methods found at:http://webdatacommons.org/productcorpus/index.html#toc4 The augmented version adds fixed splits for training, validation and testing as well as their corresponding feature vectors. The feature vectors are built using data type specific similarity metrics.The dataset contains 447 records describing products deriving from 17 e-shops which are matched against a product catalog of 50 products. The gold standards have manual annotations for 258 matching and 22,092 non-matching pairs. The total number of attributes used to decribe the product records are 26 while the attribute density is 0.25. The augmented dataset enhances the reproducibility of matching methods and the comparability of matching results. The dataset is part of the CompERBench repository which provides 21 complete benchmark tasks for entity matching for public download: http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/index.html

  11. d

    815 Million Global Contact Data - B2B / Email / Mobile Phone / LinkedIn URL...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RampedUp Global Data Solutions, 815 Million Global Contact Data - B2B / Email / Mobile Phone / LinkedIn URL - RampedUp [Dataset]. https://datarade.ai/data-products/global-contact-data-personal-and-professional-840-million-rampedup-global-data-solutions
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    RampedUp Global Data Solutions
    Area covered
    Pakistan, Greece, Grenada, Sint Eustatius and Saba, Bolivia (Plurinational State of), United States Minor Outlying Islands, Ireland, Uganda, Chad, Haiti
    Description

    Sign Up for a free trial: https://rampedup.io/sign-up-%2F-log-in - 7 Days and 50 Credits to test our quality and accuracy.

    These are the fields available within the RampedUp Global dataset.

    CONTACT DATA: Personal Email Address - We manage over 115 million personal email addresses Professional Email - We manage over 200 million professional email addresses Home Address - We manage over 20 million home addresses Mobile Phones - 65 million direct lines to decision makers Social Profiles - Individual Facebook, Twitter, and LinkedIn Local Address - We manage 65M locations for local office mailers, event-based marketing or face-to-face sales calls.

    JOB DATA: Job Title - Standardized titles for ease of use and selection Company Name - The Contact's current employer Job Function - The Company Department associated with the job role Title Level - The Level in the Company associated with the job role Job Start Date - Identify people new to their role as a potential buyer

    EMPLOYER DATA: Websites - Company Website, Root Domain, or Full Domain Addresses - Standardized Address, City, Region, Postal Code, and Country Phone - E164 phone with country code Social Profiles - LinkedIn, CrunchBase, Facebook, and Twitter

    FIRMOGRAPHIC DATA: Industry - 420 classifications for categorizing the company’s main field of business Sector - 20 classifications for categorizing company industries 4 Digit SIC Code - 239 classifications and their definitions 6 Digit NAICS - 452 classifications and their definitions Revenue - Estimated revenue and bands from 1M to over 1B Employee Size - Exact employee count and bands Email Open Scores - Aggregated data at the domain level showing relationships between email opens and corporate domains. IP Address -Company level IP Addresses associated to Domains from a DNS lookup

    CONSUMER DATA: Education - Alma Mater, Degree, Graduation Date Skills - Accumulated Skills associated with work experience
    Interests - Known interests of contact Connections - Number of social connections. Followers - Number of social followers

    Download our data dictionary: https://rampedup.io/our-data

  12. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  13. w

    COVID-19 National Longitudinal Phone Survey 2020 – World Bank LSMS...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2021). COVID-19 National Longitudinal Phone Survey 2020 – World Bank LSMS Harmonized Dataset - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/3856
    Explore at:
    Dataset updated
    Oct 25, 2021
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    2018 - 2021
    Area covered
    Nigeria
    Description

    Abstract

    To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.

    The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.

    Two harmonized datafiles are prepared for each survey. The two datafiles are: 1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales.
    2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    Nigeria General Household Survey, Panel (GHS-Panel) 2018-2019 and Nigeria COVID-19 National Longitudinal Phone Survey (COVID-19 NLPS) 2020 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).

    The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.

    Response rate

    See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.

  14. w

    Global Financial Inclusion (Global Findex) Database 2021 - Azerbaijan

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2023). Global Financial Inclusion (Global Findex) Database 2021 - Azerbaijan [Dataset]. https://microdata.worldbank.org/index.php/catalog/5847
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2022 - 2023
    Area covered
    Azerbaijan
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world’s most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of almost 145,000 people in 139 economies, representing 97 percent of the world’s population. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Kelbadjaro-Lacha, Nakhichevan, East Zangezur, and Nagorno-Karabakh territories not included. These areas represent approximately 18% of the total population.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19–related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Additionally, phone surveys were not a viable option in 16 economies in 2021, which were then surveyed in 2022.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Azerbaijan is 1028.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  15. Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals |...

    • datarade.ai
    Updated Jan 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals | Contact Details from 170M+ Profiles - Best Price Guarantee [Dataset]. https://datarade.ai/data-products/phone-number-data-50m-verified-phone-numbers-for-global-pr-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Algeria, San Marino, Mongolia, Korea (Democratic People's Republic of), Uganda, Tonga, Timor-Leste, Panama, Mozambique, Germany
    Description

    Success.ai’s Phone Number Data offers direct access to over 50 million verified phone numbers for professionals worldwide, extracted from our expansive collection of 170 million profiles. This robust dataset includes work emails and key decision-maker profiles, making it an essential resource for companies aiming to enhance their communication strategies and outreach efficiency. Whether you're launching targeted marketing campaigns, setting up sales calls, or conducting market research, our phone number data ensures you're connected to the right professionals at the right time.

    Why Choose Success.ai’s Phone Number Data?

    Direct Communication: Reach out directly to professionals with verified phone numbers and work emails, ensuring your message gets to the right person without delay. Global Coverage: Our data spans across continents, providing phone numbers for professionals in North America, Europe, APAC, and emerging markets. Continuously Updated: We regularly refresh our dataset to maintain accuracy and relevance, reflecting changes like promotions, company moves, or industry shifts. Comprehensive Data Points:

    Verified Phone Numbers: Direct lines and mobile numbers of professionals across various industries. Work Emails: Reliable email addresses to complement phone communications. Professional Profiles: Decision-makers’ profiles including job titles, company details, and industry information. Flexible Delivery and Integration: Success.ai offers this dataset in various formats suitable for seamless integration into your CRM or sales platform. Whether you prefer API access for real-time data retrieval or static files for periodic updates, we tailor the delivery to meet your operational needs.

    Competitive Pricing with Best Price Guarantee: We provide this essential data at the most competitive prices in the industry, ensuring you receive the best value for your investment. Our best price guarantee means you can trust that you are getting the highest quality data at the lowest possible cost.

    Targeted Applications for Phone Number Data:

    Sales and Telemarketing: Enhance your telemarketing campaigns by reaching out directly to potential customers, bypassing gatekeepers. Market Research: Conduct surveys and research directly with industry professionals to gather insights that can shape your business strategy. Event Promotion: Invite prospects to webinars, conferences, and seminars directly through personal calls or SMS. Customer Support: Improve customer service by integrating accurate contact information into your support systems. Quality Assurance and Compliance:

    Data Accuracy: Our data is verified for accuracy to ensure over 99% deliverability rates. Compliance: Fully compliant with GDPR and other international data protection regulations, allowing you to use the data with confidence globally. Customization and Support:

    Tailored Data Solutions: Customize the data according to geographic, industry-specific, or job role filters to match your unique business needs. Dedicated Support: Our team is on hand to assist with data integration, usage, and any questions you may have. Start with Success.ai Today: Engage with Success.ai to leverage our Phone Number Data and connect with global professionals effectively. Schedule a consultation or request a sample through our dedicated client portal and begin transforming your outreach and communication strategies today.

    Remember, with Success.ai, you don’t just buy data; you invest in a partnership that grows with your business needs, backed by our commitment to quality and affordability.

  16. Global smartphone sales to end users 2007-2023

    • statista.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global smartphone sales to end users 2007-2023 [Dataset]. https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2022, smartphone vendors sold around 1.39 billion smartphones were sold worldwide, with this number forecast to drop to 1.34 billion in 2023.

    Smartphone penetration rate still on the rise

    Less than half of the world’s total population owned a smart device in 2016, but the smartphone penetration rate has continued climbing, reaching 78.05 percent in 2020. By 2025, it is forecast that almost 87 percent of all mobile users in the United States will own a smartphone, an increase from the 27 percent of mobile users in 2010.

    Smartphone end user sales

    In the United States alone, sales of smartphones were projected to be worth around 73 billion U.S. dollars in 2021, an increase from 18 billion dollars in 2010. Global sales of smartphones are expected to increase from 2020 to 2021 in every major region, as the market starts to recover from the initial impact of the coronavirus (COVID-19) pandemic.

  17. COVID-19 High Frequency Phone Survey of Households 2020 - World Bank LSMS...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Agency of Ethiopia (2022). COVID-19 High Frequency Phone Survey of Households 2020 - World Bank LSMS Harmonized Dataset - Ethiopia [Dataset]. https://catalog.ihsn.org/catalog/9897
    Explore at:
    Dataset updated
    Jan 3, 2022
    Dataset provided by
    Central Statistical Agencyhttps://ess.gov.et/
    Authors
    Central Statistics Agency of Ethiopia
    Time period covered
    2018 - 2021
    Area covered
    Ethiopia
    Description

    Abstract

    To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.

    The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.

    Two harmonized datafiles are prepared for each survey. The two datafiles are: 1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales. 2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    See “Ethiopia - Socioeconomic Survey 2018-2019” and “Ethiopia - COVID-19 High Frequency Phone Survey of Households 2020” available in the Microdata Library for details.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    Ethiopia Socioeconomic Survey (ESS) 2018-2019 and Ethiopia COVID-19 High Frequency Phone Survey of Households (HFPS) 2020 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).

    The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.

    Response rate

    See “Ethiopia - Socioeconomic Survey 2018-2019” and “Ethiopia - COVID-19 High Frequency Phone Survey of Households 2020” available in the Microdata Library for details.

  18. i

    Global Financial Inclusion (Global Findex) Database 2021 - Pakistan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Pakistan [Dataset]. https://catalog.ihsn.org/catalog/study/PAK_2021_FINDEX_v02_M
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Pakistan
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Did not include Azad Jammu and Kashmir (AJK) and Gilgit-Baltistan. The excluded area represents approximately 5 percent of the total population. Gender-matched sampling was used during the final stage of selection.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Pakistan is 1002.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  19. d

    Phone Number Data | APAC | 100M+ B2B Mobile Phone Numbers | 95%+ Accuracy

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Forager.ai, Phone Number Data | APAC | 100M+ B2B Mobile Phone Numbers | 95%+ Accuracy [Dataset]. https://datarade.ai/data-products/apac-b2b-mobile-data-90m-95-accuracy-api-bi-weekly-up-forager-ai
    Explore at:
    .json, .csvAvailable download formats
    Dataset provided by
    Forager.ai
    Area covered
    Ghana, Bhutan, Libya, Belarus, Uruguay, San Marino, Georgia, El Salvador, Bahamas, Burkina Faso
    Description

    Global B2B Mobile Phone Number Database | 100M+ Verified Contacts | 95% Accuracy Forager.ai provides the world’s most reliable mobile phone number data for businesses that refuse to compromise on quality. With 100 million+ professionally verified mobile numbers refreshed every 3 weeks, our database ensures 95% accuracy – so your teams never waste time on dead-end leads.

    Why Our Data Wins ✅ Accuracy You Can Trust 95% of mobile numbers are verified against live carrier records and tied to current job roles. Say goodbye to “disconnected number” voicemails.

    ✅ Depth Beyond Digits Each contact includes 150+ data points:

    Direct mobile numbers

    Current job title, company, and department

    Full career history + education background

    Location data + LinkedIn profiles

    Company size, industry, and revenue

    ✅ Freshness Guaranteed Bi-weekly updates combat job-hopping and role changes – critical for sales teams targeting decision-makers.

    ✅ Ethically Sourced & Compliant First-party collected data with full GDPR/CCPA compliance.

    Who Uses This Data?

    Sales Teams: Cold-call C-suite prospects with verified mobile numbers.

    Marketers: Run hyper-personalized SMS/WhatsApp campaigns.

    Recruiters: Source passive candidates with up-to-date contact intel.

    Data Vendors: License premium datasets to enhance your product.

    Tech Platforms: Power your SaaS tools via API with enterprise-grade B2B data.

    Flexible Delivery, Instant Results

    API (REST): Real-time integration for CRMs, dialers, or marketing stacks

    CSV/JSON: Campaign-ready files.

    PostgreSQL: Custom databases for large-scale enrichment

    Compliance: Full audit trails + opt-out management

    Why Forager.ai? → Proven ROI: Clients see 62% higher connect rates vs. industry averages (request case studies). → No Guesswork: Test-drive free samples before committing. → Scalable Pricing: Pay per record, license datasets, or get unlimited API access.

    B2B Mobile Phone Data | Verified Contact Database | Sales Prospecting Lists | CRM Enrichment | Recruitment Phone Numbers | Marketing Automation | Phone Number Datasets | GDPR-Compliant Leads | Direct Dial Contacts | Decision-Maker Data

    Need Proof? Contact us to see why Fortune 500 companies and startups alike trust Forager.ai for mission-critical outreach.

  20. s

    BuzzCity mobile advertisement dataset

    • researchdata.smu.edu.sg
    • smu.edu.sg
    bin
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Analytics Research Centre (2023). BuzzCity mobile advertisement dataset [Dataset]. http://doi.org/10.25440/smu.12062703.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Living Analytics Research Centre
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:

    publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid

    On the other hand, the click database records the click traffics and has several fields:

    id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista Research Department (2025). Mobile internet users worldwide 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
Organization logo

Mobile internet users worldwide 2020-2029

Explore at:
177 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 5, 2025
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Description

The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.

Search
Clear search
Close search
Google apps
Main menu