62 datasets found
  1. 2024 American Community Survey: S1810 | Disability Characteristics (ACS...

    • data.census.gov
    Updated Oct 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2024 American Community Survey: S1810 | Disability Characteristics (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/cedsci/table?q=Texas%20disability
    Explore at:
    Dataset updated
    Oct 30, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Disability Characteristics.Table ID.ACSST1Y2024.S1810.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of hous...

  2. H

    Disability Statistics Center

    • data.niaid.nih.gov
    • dataverse.harvard.edu
    Updated Feb 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Disability Statistics Center [Dataset]. http://doi.org/10.7910/DVN/1LHI3O
    Explore at:
    Dataset updated
    Feb 2, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data pertaining to individuals with disabilities. Topics include but are not limited to: people with disabilities’ access to employment, technology, healthcare, and community based services. Background The Disability Statistics Center is based at the Institute for Health and Aging at the University of California, San Francisco (UCSF). The Disability Statistics Center generates reports ranging from employment opportunities, Medicaid home and community-based services, mobility device use, computer and internet use, wheelchair use, vocational rehabilitation, education, medical expenditures, and functional limitations among people with disabilities. User functiona lity Data is presented in report or abstract form and can be downloaded in PDF or HTML formats by clicking on the publications link. All reports and abstracts use United States data. Additional data sources are listed under “Finding Disability Data” and include data from the United States as well as international data. Data Notes The data sources are clearly referenced for each article. The most recent publications are from 2003. There is no indication on the site when the data will be updated.

  3. Share of people with a disability in the U.S. as of 2023, by age

    • statista.com
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of people with a disability in the U.S. as of 2023, by age [Dataset]. https://www.statista.com/statistics/793952/disability-in-the-us-by-age/
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    The prevalence of disabilities in the United States shows a clear correlation with age, with nearly half of Americans aged 75 and older experiencing some form of disability. This stark contrast to younger age groups highlights the increasing challenges faced by the elderly population in maintaining their independence and quality of life. Disability rates across age groups According to 2023 data, only 0.7 percent of children under 5 years old have a disability, compared to 6.3 percent of those aged 5 to 15. The percentage rises steadily with age, reaching 11.2 percent for adults between 21 and 64 years old. A significant jump occurs in the 65 to 74 age group, where 23.9 percent have a disability. The most dramatic increase is seen in those 75 and older, with 45.3 percent experiencing some form of disability. These figures underscore the importance of accessible services and support systems for older Americans. The Individuals with Disabilities Education Act (IDEA) The prevalence of disabilities among younger Americans has significant implications for the education system. The Individuals with Disabilities Education Act (IDEA) is a law in the United States that guarantees the right to a free appropriate education for children with disabilities. In the 2021/22 academic year, 7.26 million disabled individuals aged 3 to 21 were covered by the Individuals with Disabilities Education Act (IDEA). This number includes approximately 25,000 children with traumatic brain injuries and 434,000 with intellectual disabilities.

  4. F

    Population - With a Disability, 16 Years and over

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Population - With a Disability, 16 Years and over [Dataset]. https://fred.stlouisfed.org/series/LNU00074597
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Population - With a Disability, 16 Years and over (LNU00074597) from Jun 2008 to Aug 2025 about disability, civilian, 16 years +, population, and USA.

  5. Share of people in the U.S. with a disability as of 2023, by state

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of people in the U.S. with a disability as of 2023, by state [Dataset]. https://www.statista.com/statistics/794278/disabled-population-us-by-state/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the U.S. states with the highest share of the population that had a disability were West Virginia, Arkansas, and Kentucky. At that time, around 19.7 percent of the population of West Virginia had some form of disability. The states with the lowest rates of disability were New Jersey, Utah, and Minnesota. Disability in the United States A disability is any condition, either physical or mental, that impairs one’s ability to do certain activities. Some examples of disabilities are those that affect one’s vision, hearing, movement, or learning. It is estimated that around 14 percent of the population in the United States suffers from some form of disability. The prevalence of disability increases with age, with 46 percent of those aged 75 years and older with a disability, compared to just six percent of those aged 5 to 15 years. Vision impairment One common form of disability comes from vision impairment. In 2023, around 3.6 percent of the population of West Virginia had a vision disability, meaning they were blind or had serious difficulty seeing even when wearing glasses. The leading causes of visual disability are age-related and include diseases such as cataracts, glaucoma, and age-related macular degeneration. This is clear when viewing the prevalence of vision disability by age. It is estimated that 8.3 percent of those aged 75 years and older in the United States have a vision disability, compared to 4.3 percent of those aged 65 to 74 and only 0.9 percent of those aged 5 to 15 years.

  6. V

    Virginia Disability Characteristics by Census Tract (ACS 5-Year)

    • data.virginia.gov
    csv
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Disability Characteristics by Census Tract (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-disability-characteristics-by-census-tract-acs-5-year
    Explore at:
    csv(31160488)Available download formats
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Area covered
    Virginia
    Description

    2013-2023 Virginia Disability Characteristics by Census Tract. Contains estimates and margins of error.

    Special data considerations: Large negative values do exist (more detail below) and should be addressed prior to graphing or aggregating the data. A null value in the estimate means there is no data available for the requested geography.

    A value of -888,888,888 indicates that the estimate or margin of error is not applicable or not available.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table S1810 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  7. F

    Unemployment Rate - With a Disability, 16 Years and over

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Unemployment Rate - With a Disability, 16 Years and over [Dataset]. https://fred.stlouisfed.org/series/LNU04074597
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Unemployment Rate - With a Disability, 16 Years and over (LNU04074597) from Jun 2008 to Aug 2025 about disability, 16 years +, household survey, unemployment, rate, and USA.

  8. F

    Employment-Population Ratio - With a Disability, 16 Years and over

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment-Population Ratio - With a Disability, 16 Years and over [Dataset]. https://fred.stlouisfed.org/series/LNU02374597
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment-Population Ratio - With a Disability, 16 Years and over (LNU02374597) from Jun 2008 to Aug 2025 about disability, employment-population ratio, 16 years +, household survey, population, employment, and USA.

  9. State disability by type

    • data.amerigeoss.org
    csv, esri rest +4
    Updated May 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). State disability by type [Dataset]. https://data.amerigeoss.org/tl/dataset/state-disability-by-type
    Explore at:
    kml, html, geojson, zip, csv, esri restAvailable download formats
    Dataset updated
    May 25, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    During joint coordinated responses to disasters and emergencies, knowing where people with disabilities are, and what types of disabilities the population has is critical. This multi-scale layer contains data on populations with 6 different types of disabilities: hearing, vision, cognitive, ambulatory, self-care, & independent living. Size of symbol shows the count of people with a disability, and color of symbol shows the most predominant type. Data from the U.S. Census Bureau's 2014-2018 American Community Survey. Data available for state, county, and tract.


    From this Item Page, click Data -> Fields to see all the attributes available that show breakdowns by sex and age groups.

    Accompanying web map and viewing app also available.

  10. c

    What is the prevalence of people with a disability in my area?

    • hub.scag.ca.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). What is the prevalence of people with a disability in my area? [Dataset]. https://hub.scag.ca.gov/maps/bdf1f0d9bfea4fe3b8ee1e185cb7d74b
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    Local, state, tribal, and federal agencies use disability data to plan and fund programs for people with disabilities. Disability data helps communities enroll eligible households in programs designed to assist them such as health care programs and affordable housing programs. Disability data also helps local jurisdictions provide services that:Enable older adults to remain living safely in their homes and communities (Older Americans Act).Provide services and assistance to people with a disability, such as financial assistance with utilities (Low Income Home Energy Assistance Program)Disability data helps communities qualify for grants such as the Community Development Block Grant (CDBG) Program, the HOME Investment Partnership Program, the Emergency Solutions Grants (ESG) Program, the Housing Opportunities for Persons with AIDS (HOPWA) Program, and other local and federal programs.Disability data are also used to evaluate other government programs and policies to ensure that they fairly and equitably serve the needs of all groups, as well as enforce laws, regulations, and policies against discrimination.This map shows the count and prevalence of people with a disability. This includes people with a hearing difficulty, a vision difficulty, an ambulatory difficulty, a cognitive difficulty, a self-care difficulty, and an independent-living difficulty. The features in web map are symbolized using color and size to depict total population with a disability count (size of symbol) and prevalence (color of symbol). Web map is multi-scaled, and opens displaying data for counties and tracts. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  11. d

    Learning Disability Services Monthly Statistics AT: December 2020, MHSDS:...

    • digital.nhs.uk
    Updated Dec 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Learning Disability Services Monthly Statistics AT: December 2020, MHSDS: October 2020 Final [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/learning-disability-services-statistics
    Explore at:
    Dataset updated
    Dec 24, 2020
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Dec 1, 2020 - Dec 31, 2020
    Description

    This publication brings together the Learning Disabilities and Autism (LDA) data from the Assuring Transformation (AT) collection and the LDA service specific statistics from the Mental Health Statistics Data Set (MHSDS). A couple of figures on commissioner counts were corrected in the AT CSV file on 20th May 2021. There are differences in the inpatient figures between the MHSDS and AT data sets and work is underway to better understand these. The MHSDS LDA data are currently labelled experimental as they are undergoing evaluation. Further information on the quality of these statistics is available in the Data Quality section of the main report. There is a slight difference in scope between the two data collections. The MHSDS data is from providers based in England and includes care provided in England but may be commissioned outside England. Whereas the Assuring Transformation data are provided by English commissioners and healthcare will typically be provided in England but also includes data on care commissioned in England and provided elsewhere in the UK. The release comprises: Assuring Transformation Publication. MHSDS LDA Publication: These statistics are derived from submissions made using version 4.1 of the Mental Health Services Dataset (MHSDS). Prior to May 2018 the LDA service specific statistics were included in the main MHSDS publication. MHSDS Multiple Submission Window Model (MSWM) The MHSDS v4.1 data model allows providers to retrospectively submit data for any monthly reporting period until the end of year cut-off as part of the Multiple Submission Window Model (MSWM). So, for 2020-21, providers are able to resubmit data for any previous months until the end of March 2021. (This was possible for the first time in MHSDS v4.0 but just for the end of year submission for March 2020 data). This model allows providers to improve the quality of previous submissions. Historical comparison with previous years should therefore be reviewed in that context. Additional information on the MSWM for MHSDS is available via the link at the bottom of this page (related links). We hope this information is helpful and would be grateful if you could spare a couple of minutes to complete a short customer satisfaction survey. Please use the link to the form at the bottom of this page to provide us with any feedback or suggestions for improving the report.

  12. A

    ACS 2012 Senior Estimates

    • data.amerigeoss.org
    • data.wu.ac.at
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). ACS 2012 Senior Estimates [Dataset]. https://data.amerigeoss.org/id/dataset/acs-2012-senior-estimates
    Explore at:
    json, csv, application/vnd.geo+json, htmlAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    Description

    Estimates of persons with disabilities or other support needs by Census tract in Washington State. DSHS prepared estimates of persons with disabilities or other support needs in Washington Census tracts using data from the US Census Bureau’s 2012 American Community Survey. The estimates were prepared for DSHS and the Washington Department of Health to assist in emergency preparedness planning for Washington jurisdictions.


    Only 5-year estimates (2008-2012) are available for Census tracts.

    Estimated counts, percentages, margins of error (MOEs) of counts and percentages by Census tract have been calculated for the following characteristics: Persons with Disabilities, Hearing Difficulty, Vision Difficulty, Cognitive Difficulty, Ambulatory Difficulty, Self-Care Difficulty, Independent Living Difficulty, Persons with Two or More Disabilities, Persons with Disabilities and in Poverty, Persons in Groups Quarters, Households Without Vehicles, Persons Speaking English less than "Very Well," Persons in Poverty.

    Important: DSHS reserves the right to alter, suspend, re-host, or retire this service at any time and without notice. This is a map service that you can use in custom web applications and software products. Your use of this map service in these types of tools forms a dependency on the service definition (available fields, layers, etc.). If you form any dependency on this service, be aware of this significant risk to your purposes. You might consider mitigating your risk by extracting the source data and using it to host your own service in an environment under your control. Typically, DSHS Enterprise GIS staff will provide notification of changes via the Comments RSS capability in ArcGIS Online. You may subscribe to the RSS feed that publishes comments to monitor any planned and notified changes.

  13. Prevalence of disabilities among U.S. adults in 2016, by ethnicity

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prevalence of disabilities among U.S. adults in 2016, by ethnicity [Dataset]. https://www.statista.com/statistics/937620/disability-prevalence-us-by-ethnicity/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    This statistic depicts the percentage of U.S. adults aged 18 to 44 with any disability as of 2016, by ethnicity. According to the data, among that age group, **** percent of American Indian/Alaska Native adults had a disability.

  14. O

    2017 San Diego County Demographics - Percent of the Population with a...

    • data.sandiegocounty.gov
    application/rdfxml +5
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of San Diego (2020). 2017 San Diego County Demographics - Percent of the Population with a Disability by Age Group [Dataset]. https://data.sandiegocounty.gov/Demographics/2017-San-Diego-County-Demographics-Percent-of-the-/nj44-amv2
    Explore at:
    csv, json, tsv, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    County of San Diego
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    San Diego County
    Description

    This indicator provides number and percentage of persons with a disability (one or more) within each age group. Disability status is determined for the civilian non-institutionalized population who responded to questions regarding six types of difficulty and may vary by age. For children under 5 years old, hearing and vision difficulty are used to determine disability status. For children between the ages of 5 and 14, disability status is determined from hearing, vision, cognitive, ambulatory, and self-care difficulties. For people aged 15 years and older, they are considered to have a disability if they have difficulty with any one of the six difficulty types. *Refers to the percent of those with a disability within the specific age group.

    Source: U.S. Census Bureau; 2013-2017 American Community Survey 5-Year Estimates, Table S1810.

  15. l

    Census 21 - Disability MSOA

    • data.leicester.gov.uk
    csv, excel, geojson +1
    Updated Aug 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census 21 - Disability MSOA [Dataset]. https://data.leicester.gov.uk/explore/dataset/census-21-disability-msoa/
    Explore at:
    excel, json, csv, geojsonAvailable download formats
    Dataset updated
    Aug 22, 2023
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for the MSOAs of Leicester and compare this with Leicester overall statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsDisabilityThis dataset provides Census 2021 estimates that classify usual residents in England and Wales by long-term health problems or disabilities. The estimates are as at Census Day, 21 March 2021.Definition: People who assessed their day-to-day activities as limited by long-term physical or mental health conditions or illnesses are considered disabled. This definition of a disabled person meets the harmonised standard for measuring disability and is in line with the Equality Act (2010).This dataset includes details for Leicester MSOAs.

  16. IDEA Section 618 Data Products: Static Tables- Part B

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Special Education Programs (OSEP) (2024). IDEA Section 618 Data Products: Static Tables- Part B [Dataset]. https://catalog.data.gov/dataset/idea-section-618-data-products-static-tables-part-b-77187
    Explore at:
    Dataset updated
    Mar 10, 2024
    Dataset provided by
    Office of Special Education Programshttps://sites.ed.gov/idea/
    Description

    IDEA Section 618 Data Products: Static Tables Part B Assessment Number and percent of students grades 3 through 8 and high school, served under IDEA, Part B, who participated in reading and math assessments, by assessment type and state. Number and percent of students grades 3 through 8 and high school served under IDEA, Part B, who received a valid and proficient score on assessments for math, by assessment type, grade level, and state. Number and percent of students grades 3 through 8 and high school served under IDEA, Part B, who received a valid and proficient score on assessments for reading, by assessment type, grade level, and state. Part B Child Count and Educational Environments Number of children and students served under IDEA, Part B, by age group and state. Number of children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, by disability and state. Number of students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by disability and state. Number and percent of children ages 3 through 5 (not in kindergarten) and students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by EL status and state. Number and percent of children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, by race/ethnicity and state. Number and percent of students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by race/ethnicity and state. Children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, as a percentage of population, by disability category and state. Students ages 5 (in kindergarten) through 21 served under IDEA, Part B, as a percentage of population, by disability category and state. Children and students ages 3 through 21 served under IDEA, Part B, as a percentage of population, by age and state. Number and percent of children in race/ethnicity category ages 3 through 5 (not in kindergarten) with disabilities served under IDEA, Part B, by disability category and state. Number and percent of children in race/ethnicity category ages 5 (in kindergarten) through 21 with disabilities served under IDEA, Part B, by disability category and state. Number and percent of children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, by educational environment and state. Number and percent of students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by educational environment and state. Number and percent of female/male children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, by educational environment and state. Number and percent of female/male students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by educational environment and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) children ages 3 through 5 (not in kindergarten) served under IDEA, Part B, by educational environment and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) students ages 5 (in kindergarten) through 21 served under IDEA, Part B, by educational environment and state. Number and percent of children in race/ethnicity category ages 3 through 5 (not in kindergarten) with disabilities served under IDEA, Part B, by educational environment and state. Number and percent of students in race/ethnicity category ages 5 (in kindergarten) through 21 with disabilities served under IDEA, Part B, by educational environment and state. Number of children and students served under IDEA, Part B, in the US, Outlying Areas, and Freely Associated States by age and disability category. Part B Discipline Number of children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal and state by disability. Number of children and students ages 3 through 21 served under IDEA, Part B, suspended/expelled by total number of days removed and state by disability. Number of children and students ages 3 through 21 served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year and state by type of disability. Number of children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal and state by race/ethnicity. Number of children and students ages 3 through 21 with disabilities served under IDEA, Part B, suspended/expelled by total number of days removed and state by race/ethnicity. Number of children and students ages 3 through 21 with disabilities served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year, and state by race/ethnicity. Number and percent of female and male children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal and state. Number and percent of female and male children and students ages 3 through 21 with disabilities served under IDEA, Part B, suspended/expelled by total number of days removed and state. Number and percent of female and male children and students ages 3 through 21 with disabilities served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) children and students ages 3 through 21 with disabilities served under IDEA, Part B, suspended/expelled by total number of removed and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) children and students ages 3 through 21 with disabilities served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year and state. Number of children and students, ages 3 through 21, subject to expulsion, by disability status, receipt of educational services and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal, disability, and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, suspended/expelled by total number of days removed, disability, and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year, disability, and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, removed to an Interim Alternative Educational Setting by type of removal, race/ethnicity, and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, suspended/expelled by total number of days removed, race/ethnicity, and state. Percent of children and students ages 3 through 21 with disabilities served under IDEA, Part B, subject to disciplinary removal by total cumulative number of days removed during school year, race/ ethnicity, and state. Part B Dispute Resolution Number and percent of written, signed complaints initiated through dispute resolution procedures for children ages 3 through 21 served under IDEA, Part B, by case status and state. Number and percent of mediations held through dispute resolution procedures for children ages 3 through 21 served under IDEA, Part B, by case status and state. Number and percent of hearings (fully adjudicated) through dispute resolution procedures for children ages 3 through 21 served under IDEA, Part B, by case status and state. Number of expedited hearing requests (related to disciplinary decision) filed through dispute resolution procedures for children ages 3 through 21 served under IDEA, Part B, by case status and state. Part B Exiting Number of students ages 14 through 21 with disabilities served under IDEA, Part B, who exited special education, by exit reason and state. Number of students ages 14 through 21 with disabilities served under IDEA, Part B, in the U.S., Outlying Areas, and Freely Associated States who exited special education, by exit reason and age. Number and percent of students ages 14 through 21 with disabilities served under IDEA, Part B, who exited special education, by exit reason, race/ethnicity, and state. Number and percent of female and male students ages 14 through 21 with disabilities served under IDEA, Part B, who exited special education, by exit reason and state. Number and percent of non-English Learner (non-EL) and English Learner (EL) students ages 14 through 21 with disabilities served under IDEA, Part B, who exited special education, by exit reason and state. Part B Maintenance of Effort Reduction and Coordinated Early Intervening Services Number and percent of LEAs reported under each determination level that controls whether the LEA may be able to reduce MOE Amount reduced under the IDEA MOE provision in IDEA §613(a)(2)(C) Number and percent of LEAs that met requirements and had an increase in 611 allocations and took the MOE reduction Number and percent of LEAs required to use 15% of funds for CEIS due to significant disproportionality or voluntarily reserved funds for CEIS Number of children who received CEIS anytime in the past two years and who received special education and related services Number and percent of LEAs/ESAs that were determined to meet the MOE compliance standard in SY 2016-17 Part B Personnel Teachers employed (FTE) to work with children, ages 3 through 5, who are receiving special education under IDEA, Part B, by qualification status and state. Teachers employed

  17. Household Pulse Survey (HPS): COVID-19 Vaccination among People with...

    • catalog.data.gov
    • data.virginia.gov
    • +6more
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Household Pulse Survey (HPS): COVID-19 Vaccination among People with Disabilities [Dataset]. https://catalog.data.gov/dataset/household-pulse-survey-hps-covid-19-vaccination-among-people-with-disabilities
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Household Pulse Survey (HPS): HPS is a rapid-response survey of adults ages ≥18 years led by the U.S. Census Bureau, in partnership with seven other federal statistical agencies, to measure household experiences during the COVID-19 pandemic. Detailed information on probability sampling using the U.S. Census Bureau’s Master Address File, questionnaires, response rates, and bias assessment is available on the Census Bureau website (https://www.census.gov/data/experimental-data-products/household-pulse-survey.html). Data from adults ages ≥18 years and older are collected by a 20-minute online survey from randomly sampled households stratified by state and the top 15 metropolitan statistical areas (MSAs). Data are weighted to represent total persons ages 18 and older living within households and to mitigate possible bias that can result from non-responses and incomplete survey frame. Data from adults ages ≥18 years and older are collected by 20-minute online survey from randomly sampled households stratified by state and the top 15 metropolitan statistical areas (MSAs). For more information on this survey, see https://www.census.gov/programs-surveys/household-pulse-survey.html. Data are weighted to represent total persons ages 18 and older living within households and to mitigate possible bias that can result from non-responses and incomplete survey frame. Responses in the Household Pulse Survey (https://www.census.gov/programs-surveys/household-pulse-survey.html) are self-reported. Estimates of vaccination coverage may differ from vaccine administration data reported at COVID-19 Vaccinations in the United States (https://covid.cdc.gov/covid-data-tracker/#vaccinations).

  18. m

    Data Corner

    • blind.msstate.edu
    Updated Oct 9, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Data Corner [Dataset]. https://www.blind.msstate.edu/our-products/data-corner
    Explore at:
    Dataset updated
    Oct 9, 2013
    Description

    In 2008 the Bureau of Labor Statistics added questions to the Current Population Survey (CPS) to identify people with disabilities. This includes identifying people with a visual impairment, based on “Yes” responses to the question, “Is anyone blind or does anyone have serious difficulty seeing even when wearing glasses?” Data available from the CPS include: labor force participation for people who are blind or have low vision (B/LV) employment rate for people who are B/LV unemployment rate for people who are B/LV national prevalence estimate for visual impairment The U.S. Census Bureau also added disability questions to their American Community Survey (ACS) in 2008. This includes identifying people with a visual impairment, based on “Yes” responses to the question, “Is this person blind or does he/she have serious difficulty seeing even when wearing glasses?” The ACS includes data on a wide range of topics, including labor force statistics and prevalence estimates for visual impairment. On this page, we provide access to data from both surveys. Select a data source to begin exploring.

  19. ACS Disability Status Variables - Boundaries

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +9more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Disability Status Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/ef1492a820674160ba6815c5e1637c27
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows disability status by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of elderly (65+) with a disability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B18101Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. F

    Labor Force Participation Rate - With a Disability, 16 Years and over

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Labor Force Participation Rate - With a Disability, 16 Years and over [Dataset]. https://fred.stlouisfed.org/series/LNU01374597
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Labor Force Participation Rate - With a Disability, 16 Years and over (LNU01374597) from Jun 2008 to Aug 2025 about disability, participation, civilian, labor force, 16 years +, labor, household survey, rate, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ACS (2023). 2024 American Community Survey: S1810 | Disability Characteristics (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/cedsci/table?q=Texas%20disability
Organization logo

2024 American Community Survey: S1810 | Disability Characteristics (ACS 1-Year Estimates Subject Tables)

2024: ACS 1-Year Estimates Subject Tables

Explore at:
Dataset updated
Oct 30, 2023
Dataset provided by
United States Census Bureauhttp://census.gov/
Authors
ACS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Time period covered
2024
Description

Key Table Information.Table Title.Disability Characteristics.Table ID.ACSST1Y2024.S1810.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of hous...

Search
Clear search
Close search
Google apps
Main menu