Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Love County by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Love County across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.24% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Love County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Love Valley by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Love Valley across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 55.48% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Love Valley Population by Race & Ethnicity. You can refer the same here
Annual population estimates by marital status or legal marital status, age and sex, Canada, provinces and territories.
Percentage of persons aged 15 years and over by satisfaction with friend relationships, by gender, for Canada, regions and provinces.
Data on marital status, age group and gender for the population aged 15 and over, Canada, provinces and territories, economic regions, 2021 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Love Valley population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Love Valley across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Love Valley was 165, a 1.85% increase year-by-year from 2022. Previously, in 2022, Love Valley population was 162, an increase of 2.53% compared to a population of 158 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Love Valley increased by 110. In this period, the peak population was 165 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Love Valley Population by Year. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Poverty Status of People by Family Relationship: All People, Below Poverty Threshold (HSTPOVARAPBPP) from 1959 to 2023 about family, percent, poverty, persons, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Percent of People Age 0-17 in Poverty for Love County, OK (PPU18OK40085A156NCEN) from 1989 to 2023 about Love County, OK; under 18 years; OK; percent; child; poverty; and USA.
By City of San Francisco [source]
This dataset provides a comprehensive composite index that captures the relative vulnerability of San Francisco communities to the health impacts of flooding and extreme storms. Predominantly sourced from local governmental health, housing, and public data sources, this index is constructed from an array of socio-economic factors, exposure indices,Health indicators and housing attributes. Used as a valuable planning tool for both health and climate adaptation initiatives throughout San Francisco, this dataset helps to identify vulnerable populations within the city such as areas with high concentrations of children or elderly individuals. Data points included in this index include: census blockgroup numbers; the percentage of population under 18 years old; percentage of population above 65; percentage non-white; poverty levels; education level; yearly precipitation estimates; diabetes prevalence rate; mental health issues reported in the area; asthma cases by geographic location;; disability rates within each block group measure as well as housing quality metrics. All these components provide a broader understanding on how best to tackle issues faced within SF arising from any form of climate change related weather event such as floods or extreme storms
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to analyze the vulnerability of the population in San Francisco to the health impacts of floods and storms. This dataset includes a number of important indicators such as poverty, education, demographic, exposure and health-related information. These indicators can be useful for developing effective strategies for health and climate adaptation in an urban area.
To get started with this dataset: First, review the data dictionary provided in the attachments section of this metadata to understand each variable that you plan on using in your analysis. Second, see if there are any null or missing values in your columns by checking out ‘Null Value’ column provided in this metadata sheet and look at how they will affect your analysis - use appropriate methods to handle those values based on your goals and objectives. Thirdly begin exploring relationships between different variables using visualizations like pandas scatter_matrix() & pandas .corr() . These tools can help you identify potential strong correlations between certain variables that you may have not seen otherwise through simple inspection of the data.
Lastly if needed use modelling techniques like regression analysis or other quantitative methods like ANOVA’s etc., for further elaboration on understanding relationships between different parameters involved as per need basis
- Developing targeted public health interventions focused on high-risk areas/populations as identified in the vulnerability index.
- Establishing criteria for insurance premiums and policies within high-risk areas/populations to incentivize adaption to climate change.
- Visual mapping of individual indicators in order to identify trends and correlations between flood risk and socioeconomic indicators, resource availability, and/or healthcare provision levels at a granular level
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: san-francisco-flood-health-vulnerability-1.csv | Column name | Description | |:---------------------------|:----------------------------------------------------------------------------------------| | Census Blockgroup | Unique numerical identifier for each block in the city. (Integer) | | Children | Percentage of population under 18 years of age. (Float) | | Children_wNULLvalues | Percentage of population under 18 years of age with null values. (Float) | | Elderly | Percentage of population over 65 years of age. (Float) | | Elderly_wNULLvalues | Percentage of population over 65 years of age with null values. (Float) | | NonWhite | Percentage of non-white population. (Float) ...
The goal of the Chicago Women's Health Risk Study (CWHRS) was to develop a reliable and validated profile of risk factors directly related to lethal or life-threatening outcomes in intimate partner violence, for use in agencies and organizations working to help women in abusive relationships. Data were collected to draw comparisons between abused women in situations resulting in fatal outcomes and those without fatal outcomes, as well as a baseline comparison of abused women and non-abused women, taking into account the interaction of events, circumstances, and interventions occurring over the course of a year or two. The CWHRS used a quasi-experimental design to gather survey data on 705 women at the point of service for any kind of treatment (related to abuse or not) sought at one of four medical sites serving populations in areas with high rates of intimate partner homicide (Chicago Women's Health Center, Cook County Hospital, Erie Family Health Center, and Roseland Public Health Center). Over 2,600 women were randomly screened in these settings, following strict protocols for safety and privacy. One goal of the design was that the sample would not systematically exclude high-risk but understudied populations, such as expectant mothers, women without regular sources of health care, and abused women in situations where the abuse is unknown to helping agencies. To accomplish this, the study used sensitive contact and interview procedures, developed sensitive instruments, and worked closely with each sample site. The CWHRS attempted to interview all women who answered "yes -- within the past year" to any of the three screening questions, and about 30 percent of women who did not answer yes, provided that the women were over age 17 and had been in an intimate relationship in the past year. In total, 705 women were interviewed, 497 of whom reported that they had experienced physical violence or a violent threat at the hands of an intimate partner in the past year (the abused, or AW, group). The remaining 208 women formed the comparison group (the non-abused, or NAW, group). Data from the initial interview sections comprise Parts 1-8. For some women, the AW versus NAW interview status was not the same as their screening status. When a woman told the interviewer that she had experienced violence or a violent threat in the past year, she and the interviewer completed a daily calendar history, including details of important events and each violent incident that had occurred the previous year. The study attempted to conduct one or two follow-up interviews over the following year with the 497 women categorized as AW. The follow-up rate was 66 percent. Data from this part of the clinic/hospital sample are found in Parts 9-12. In addition to the clinic/hospital sample, the CWHRS collected data on each of the 87 intimate partner homicides occurring in Chicago over a two-year period that involved at least one woman age 18 or older. Using the same interview schedule as for the clinic/hospital sample, CWHRS interviewers conducted personal interviews with one to three "proxy respondents" per case, people who were knowledgeable and credible sources of information about the couple and their relationship, and information was compiled from official or public records, such as court records, witness statements, and newspaper accounts (Parts 13-15). In homicides in which a woman was the homicide offender, attempts were made to contact and interview her. This "lethal" sample, all such homicides that took place in 1995 or 1996, was developed from two sources, HOMICIDES IN CHICAGO, 1965-1995 (ICPSR 6399) and the Cook County Medical Examiner's Office. Part 1 includes demographic variables describing each respondent, such as age, race and ethnicity, level of education, employment status, screening status (AW or NAW), birthplace, and marital status. Variables in Part 2 include details about the woman's household, such as whether she was homeless, the number of people living in the household and details about each person, the number of her children or other children in the household, details of any of her children not living in her household, and any changes in the household structure over the past year. Variables in Part 3 deal with the woman's physical and mental health, including pregnancy, and with her social support network and material resources. Variables in Part 4 provide information on the number and type of firearms in the household, whether the woman had experienced power, control, stalking, or harassment at the hands of an intimate partner in the past year, whether she had experienced specific types of violence or violent threats at the hands of an intimate partner in the past year, and whether she had experienced symptoms of Post-Traumatic Stress Disorder related to the incidents in the past month. Variables in Part 5 specify the partner or partners who were responsible for the incidents in the past year, record the type and length of the woman's relationship with each of these partners, and provide detailed information on the one partner she chose to talk about (called "Name"). Variables in Part 6 probe the woman's help-seeking and interventions in the past year. Variables in Part 7 include questions comprising the Campbell Danger Assessment (Campbell, 1993). Part 8 assembles variables pertaining to the chosen abusive partner (Name). Part 9, an event-level file, includes the type and the date of each event the woman discussed in a 12-month retrospective calendar history. Part 10, an incident-level file, includes variables describing each violent incident or threat of violence. There is a unique identifier linking each woman to her set of events or incidents. Part 11 is a person-level file in which the incidents in Part 10 have been aggregated into totals for each woman. Variables in Part 11 include, for example, the total number of incidents during the year, the number of days before the interview that the most recent incident had occurred, and the severity of the most severe incident in the past year. Part 12 is a person-level file that summarizes incident information from the follow-up interviews, including the number of abuse incidents from the initial interview to the last follow-up, the number of days between the initial interview and the last follow-up, and the maximum severity of any follow-up incident. Parts 1-12 contain a unique identifier variable that allows users to link each respondent across files. Parts 13-15 contain data from official records sources and information supplied by proxies for victims of intimate partner homicides in 1995 and 1996 in Chicago. Part 13 contains information about the homicide incidents from the "lethal sample," along with outcomes of the court cases (if any) from the Administrative Office of the Illinois Courts. Variables for Part 13 include the number of victims killed in the incident, the month and year of the incident, the gender, race, and age of both the victim and offender, who initiated the violence, the severity of any other violence immediately preceding the death, if leaving the relationship triggered the final incident, whether either partner was invading the other's home at the time of the incident, whether jealousy or infidelity was an issue in the final incident, whether there was drug or alcohol use noted by witnesses, the predominant motive of the homicide, location of the homicide, relationship of victim to offender, type of weapon used, whether the offender committed suicide after the homicide, whether any criminal charges were filed, and the type of disposition and length of sentence for that charge. Parts 14 and 15 contain data collected using the proxy interview questionnaire (or the interview of the woman offender, if applicable). The questionnaire used for Part 14 was identical to the one used in the clinic sample, except for some extra questions about the homicide incident. The data include only those 76 cases for which at least one interview was conducted. Most variables in Part 14 pertain to the victim or the offender, regardless of gender (unless otherwise labeled). For ease of analysis, Part 15 includes the same 76 cases as Part 14, but the variables are organized from the woman's point of view, regardless of whether she was the victim or offender in the homicide (for the same-sex cases, Part 15 is from the woman victim's point of view). Parts 14 and 15 can be linked by ID number. However, Part 14 includes five sets of variables that were asked only from the woman's perspective in the original questionnaire: household composition, Post-Traumatic Stress Disorder (PTSD), social support network, personal income (as opposed to household income), and help-seeking and intervention. To avoid redundancy, these variables appear only in Part 14. Other variables in Part 14 cover information about the person(s) interviewed, the victim's and offender's age, sex, race/ethnicity, birthplace, employment status at time of death, and level of education, a scale of the victim's and offender's severity of physical abuse in the year prior to the death, the length of the relationship between victim and offender, the number of children belonging to each partner, whether either partner tried to leave and/or asked the other to stay away, the reasons why each partner tried to leave, the longest amount of time each partner stayed away, whether either or both partners returned to the relationship before the death, any known physical or emotional problems sustained by victim or offender, including the four-item Medical Outcomes Study (MOS) scale of depression, drug and alcohol use of the victim and offender, number and type of guns in the household of the victim and offender, Scales of Power and Control (Johnson, 1996) or Stalking and Harassment (Sheridan, 1992) by either intimate partner in the year prior to the death, a modified version of the Conflict Tactics Scale (CTS)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated Percent of People of All Ages in Poverty for Love County, OK was 14.40% in January of 2023, according to the United States Federal Reserve. Historically, Estimated Percent of People of All Ages in Poverty for Love County, OK reached a record high of 18.30 in January of 1995 and a record low of 11.70 in January of 2020. Trading Economics provides the current actual value, an historical data chart and related indicators for Estimated Percent of People of All Ages in Poverty for Love County, OK - last updated from the United States Federal Reserve on June of 2025.
Utilising a regression analysis we created a correlation matrix utilising a number of demographic indicators from the Local Insight platform. This application is showing the distribution of the datasets that were found to have the strongest relationships, with the base comparison dataset of proportion of population holding no passport. This app contains the following datasets: proportion of people in employment in social grade N-SEC 6 semi-routine occupations, proportion of households that are compromised of one one cohabitating couple family with dependent children, proportion of people in employment in social grade N-SEC 7 routine occupations, proportion of people classified as part of TfWM Traditional Ways persona, proportion of people aged 16 to 24 receviing DWP benefits, estimate of proportion of adults engaged in healthy eating, proportion of people aged 16 to 24 with no qualifications, proportion of people receiving DLA or PIP, proportion of people presumed to be part of Pressured Families TfWM persona and proportion of people aged 16 to 24 who are receving DWP benefits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated Percent of People Age 0-17 in Poverty for Love County, OK was 18.70% in January of 2023, according to the United States Federal Reserve. Historically, Estimated Percent of People Age 0-17 in Poverty for Love County, OK reached a record high of 25.60 in January of 1995 and a record low of 16.30 in January of 2020. Trading Economics provides the current actual value, an historical data chart and related indicators for Estimated Percent of People Age 0-17 in Poverty for Love County, OK - last updated from the United States Federal Reserve on April of 2025.
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Economically Active Population Survey: Employed part-time because they care for dependent people by sex and age group. Percentages with respect to the total for each age group. Annual. National.
By Correlates of War Project [source]
The World Religion Project (WRP) is an ambitious endeavor to conduct a comprehensive analysis of religious adherence throughout the world from 1945 to 2010. This cutting-edge project offers unparalleled insight into the religious behavior of people in different countries, regions, and continents during this time period. Its datasets provide important information about the numbers and percentages of adherents across a multitude of different religions, religion families, and non-religious affiliations.
The WRP consists of three distinct datasets: the national religion dataset, regional religion dataset, and global religion dataset. Each is focused on understanding individually specific realms for varied analysis approaches - from individual states to global systems. The national dataset provides data on number of adherents by state as well as percentage population practicing a given faith group in five-year increments; focusing attention to how this number evolves from nation to nation over time. Similarly, regional data is provided at five year intervals highlighting individual region designations with one modification – Pacific Ocean states have been reclassified into their own Oceania category according to Country Code Number 900 or above). Finally at a global level – all states are aggregated in order that we may understand a snapshot view at any five-year interval between 1945‐2010 regarding relationships between religions or religio‐families within one location or transnationally.
This project was developed in three stages: firstly forming a religions tree (a systematic classification), secondly collecting data such as this provided by WRP according to that classification structure – lastly cleaning the data so discrepancies may be reconciled and imported where needed with gaps selected when unknown values were encountered during collection process . We would encourage anyone wishing details undergoing more detailed reading/analysis relating various use applications for these rich datasets - please contact Zeev Maoz (University California Davis) & Errol A Henderson _(Pennsylvania State University)
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
The World Religions Project (WRP) dataset offers a comprehensive look at religious adherence around the world within a single dataset. With this dataset, you can track global religious trends over a period of 65 years and explore how they’ve changed during that time. By exploring the WRP data set, you’ll gain insight into cross-regional and cross-time patterns in religious affiliation around the world.
- Analyzing historical patterns of religious growth and decline across different regions
- Creating visualizations to compare religious adherence in various states, countries, or globally
- Studying the impact of governmental policies on religious participation over time
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: WRP regional data.csv | Column name | Description | |:-----------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------| | Year | Reference year for data collection. (Integer) | | Region | World region according to Correlates Of War (COW) Regional Systemizations with one modification (Oceania category for COW country code ...
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Economically Active Population Survey: Employees by number of people that work in the establishment, sex and autonomous community. Percentages in relation to the total of each autonomous community. Annual. Autonomous Communities and Cities.
In 2023 in the United States, 12 people were murdered by their employer. However, 3,527 people were killed by an acquaintance compared to 1,674 who were killed by a stranger. A ranking of the total number of murders by U.S. state can be found here.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Percent of People of All Ages in Poverty for Love County, OK (PPAAOK40085A156NCEN) from 1989 to 2023 about Love County, OK; OK; percent; child; poverty; and USA.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The percentage of adults (aged 16 and over) that responded to the question "How often do you feel lonely?" with "Always or often" or "Some of the time"
Rationale At the beginning of 2018, the Prime Minister highlighted the issue of loneliness, announcing a Minister for Loneliness and committing to develop a national strategy to help tackle loneliness and a national measure for loneliness.
The national strategy, A Connected Society: A Strategy for Tackling Loneliness, was published on 15 October 2018. The commitments made by the Department of Health and Social Care (DHSC) and NHS England in the strategy identify loneliness to be a serious public health concern.
In keeping with the Loneliness Strategy, loneliness is defined here as: “a subjective, unwelcome feeling of lack or loss of companionship. It happens when we have a mismatch between the quantity and quality of social relationships that we have, and those that we want.” This is based on a definition first suggested by Perlman and Peplau in 1981(1).
Loneliness is a feeling that most people will experience at some point in their lives. When people feel lonely most or all of the time, it can have a serious impact on an individual’s well-being and their ability to function in society. Feeling lonely frequently is linked to early deaths and its health impact is thought to be on a par with other public health priorities like obesity or smoking.
Lonely people are more likely to be readmitted to hospital or have a longer stay. There is also evidence that lonely people are more likely to visit a General Practitioner or Accident and Emergency and more likely to enter local authority funded residential care.
At work, higher loneliness among employees is associated with poorer performance on tasks and in a team, while social interaction at work has been linked to increased productivity.
Loneliness can affect anyone of any age and background. It is important to measure loneliness because the evidence on loneliness is currently much more robust and extensive on loneliness in older people, but much less for other age groups including children and young people.
If more people measure loneliness in the same way, we will build a much better evidence base more quickly. That’s why the Prime Minister asked the Office for National Statistics (ONS) to develop national indicators of loneliness for people of all ages, suitable for use on major studies.
When reporting the prevalence of loneliness, ONS advise using the responses from the direct question, “How often do you feel lonely?” The inclusion of the direct loneliness measure in the Public Health Outcomes Framework (PHOF) will help inform and focus future work on loneliness at both a national and local level, providing a focus to support strategic leadership, policy decisions and service commissioning.
In this first set of data on loneliness prevalence at a local authority level, we have merged the two most frequent categories of feeling lonely (often or always and some of the time). This is due to small sample sizes and the limitations of this data will be explained in more detail in the caveats section.
This will be replaced next year by a 2-year pooled dataset which will have large enough sample sizes to report chronic loneliness. Presenting the data this year will help local authorities to work preventatively to tackle chronic loneliness by showing whether a local area has higher than national average levels of loneliness.
(1) Perlman D and Peplau LA (1981) 'Toward a Social Psychology of Loneliness', in Gilmour R and Duck S (eds.), Personal Relationships. 3, Personal Relationships in Disorder, London: Academic Press, pp. 31–56.
Definition of numerator Weighted number of respondents aged 16 and over, with a valid response to the question "How often do you feel lonely" that answered "Always or often" or "Some of the time". Active Lives Adult Survey data is collected November to November.
Definition of denominator Weighted number of respondents aged 16 and over, with a valid response to the question "How often do you feel lonely?".Denominator values in the Download data are unweighted counts. All analyses for this indicator have been weighted to be representative of the population of England.Active Lives Adult Survey data is collected November to November.
Caveats
Due to the sample size at local authority level, the "often or always" category is merged with the next most severe category of loneliness (people who respond as feeling lonely “some of the time”).
Standard practice is to report the two categories separately. However, data from other sources shows a degree of volatility in the ratio between these categories at the local authority (LA) level.
Therefore, there is a risk that when two local authorities are both reported as having 25% of people feeling lonely (often or always combined with some of the time), the actual figures for "often or always" might differ significantly. For example, one LA might have 24% often and always while another has only 3%, which would not be apparent in the combined category.
This could lead to underestimation or overestimation of chronic loneliness levels by local authorities.
For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail. The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts. The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate. More information about these data are available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review our FAQs. Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data. Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR)..1. Population Density2. Poverty Rate3. Median Household income4. Education Attainment5. English Speaking Ability6. Household without Internet Access7. Non-Hispanic White Population8. Non-Hispanic African-American Population9. Non-Hispanic Asian Population10. Hispanic Population
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Love County by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Love County across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.24% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Love County Population by Race & Ethnicity. You can refer the same here