Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Live Oak. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Live Oak, the median income for all workers aged 15 years and older, regardless of work hours, was $55,656 for males and $38,659 for females.
These income figures highlight a substantial gender-based income gap in Live Oak. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Live Oak.
- Full-time workers, aged 15 years and older: In Live Oak, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,760, while females earned $53,843, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Live Oak.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Live Oak.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak median household income by race. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the number and proportion of UK employee jobs with hourly pay below the living wage, by region, work geography, local authority and Parliamentary constituency, as defined by the Living Wage Foundation.
Update 29-04-2020: The data is now split into two files based on the variable collection frequency (monthly and yearly). Additional variables added: area size in hectares, number of jobs in the area, number of people living in the area.
I have been inspired by Xavier and his work on Barcelona to explore the city of London! 🇬🇧 💂
The datasets is primarily centered around the housing market of London. However, it contains a lot of additional relevant data: - Monthly average house prices - Yearly number of houses - Yearly number of houses sold - Yearly percentage of households that recycle - Yearly life satisfaction - Yearly median salary of the residents of the area - Yearly mean salary of the residents of the area - Monthly number of crimes committed - Yearly number of jobs - Yearly number of people living in the area - Area size in hectares
The data is split by areas of London called boroughs (a flag exists to identify these), but some of the variables have other geographical UK regions for reference (like England, North East, etc.). There have been no changes made to the data except for melting it into a long format from the original tables.
The data has been extracted from London Datastore. It is released under UK Open Government License v2 and v3. The underlining datasets can be found here: https://data.london.gov.uk/dataset/uk-house-price-index https://data.london.gov.uk/dataset/number-and-density-of-dwellings-by-borough https://data.london.gov.uk/dataset/subjective-personal-well-being-borough https://data.london.gov.uk/dataset/household-waste-recycling-rates-borough https://data.london.gov.uk/dataset/earnings-place-residence-borough https://data.london.gov.uk/dataset/recorded_crime_summary https://data.london.gov.uk/dataset/jobs-and-job-density-borough https://data.london.gov.uk/dataset/ons-mid-year-population-estimates-custom-age-tables
Cover photo by Frans Ruiter from Unsplash
The dataset lends itself for extensive exploratory data analysis. It could also be a great supervised learning regression problem to predict house price changes of different boroughs over time.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Live Oak. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Live Oak, the median income for all workers aged 15 years and older, regardless of work hours, was $55,656 for males and $38,659 for females.
These income figures highlight a substantial gender-based income gap in Live Oak. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Live Oak.
- Full-time workers, aged 15 years and older: In Live Oak, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,760, while females earned $53,843, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Live Oak.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Live Oak.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak median household income by race. You can refer the same here