100+ datasets found
  1. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  2. N

    Globe, AZ Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Globe, AZ Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66a9e537-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arizona, Globe
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.

    Key observations

    Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Globe population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Globe is shown in the following column.
    • Population (Female): The female population in the Globe is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Globe for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here

  3. World Population dataset

    • kaggle.com
    zip
    Updated Jan 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swapnil_swnt202 (2024). World Population dataset [Dataset]. https://www.kaggle.com/datasets/swapnilswnt202/world-population-dataset/discussion
    Explore at:
    zip(102719 bytes)Available download formats
    Dataset updated
    Jan 24, 2024
    Authors
    Swapnil_swnt202
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    Dataset

    This dataset was created by Swapnil_swnt202

    Released under MIT

    Contents

  4. Total population worldwide 1950-2100

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  5. N

    White Earth, ND Census Bureau Gender Demographics and Population...

    • neilsberg.com
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth, ND Census Bureau Gender Demographics and Population Distribution Across Age Datasets [Dataset]. https://www.neilsberg.com/research/datasets/e1b1f584-52cf-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    White Earth, North Dakota
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of White Earth.

    Content

    The dataset constitues the following two datasets across these two themes

    • White Earth, ND Population Breakdown by Gender
    • White Earth, ND Population Breakdown by Gender and Age

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  6. World population datasets

    • kaggle.com
    zip
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abu Humza Khan (2024). World population datasets [Dataset]. https://www.kaggle.com/abuhumzakhan/world-population-datasets
    Explore at:
    zip(543 bytes)Available download formats
    Dataset updated
    Dec 10, 2024
    Authors
    Abu Humza Khan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Dataset

    This dataset was created by Abu Humza Khan

    Released under Database: Open Database, Contents: Database Contents

    Contents

  7. T

    PERSONAL COMPUTERS PER 100 PEOPLE WB by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). PERSONAL COMPUTERS PER 100 PEOPLE WB by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/personal-computers-per-100-people-wb-
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jun 16, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PERSONAL COMPUTERS PER 100 PEOPLE WB reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. T

    EMPLOYED PERSONS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). EMPLOYED PERSONS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/employed-persons
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for EMPLOYED PERSONS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. H

    Colombia - Population Density

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Colombia - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-colombia
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  10. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  11. Distribution of the global population by continent 2024

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  12. U

    Global City Data

    • data.ubdc.ac.uk
    • brightstripe.co.uk
    xls
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Global City Data [Dataset]. https://data.ubdc.ac.uk/dataset/global-city-data
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Description

    A range of indicators for a selection of cities from the New York City Global City database.

    Dataset includes the following:

    Geography

    City Area (km2)

    Metro Area (km2)

    People

    City Population (millions)

    Metro Population (millions)

    Foreign Born

    Annual Population Growth

    Economy

    GDP Per Capita (thousands $, PPP rates, per resident)

    Primary Industry

    Secondary Industry

    Share of Global 500 Companies (%)

    Unemployment Rate

    Poverty Rate

    Transportation

    Public Transportation

    Mass Transit Commuters

    Major Airports

    Major Ports

    Education

    Students Enrolled in Higher Education

    Percent of Population with Higher Education (%)

    Higher Education Institutions

    Tourism

    Total Tourists Annually (millions)

    Foreign Tourists Annually (millions)

    Domestic Tourists Annually (millions)

    Annual Tourism Revenue ($US billions)

    Hotel Rooms (thousands)

    Health

    Infant Mortality (Deaths per 1,000 Births)

    Life Expectancy in Years (Male)

    Life Expectancy in Years (Female)

    Physicians per 100,000 People

    Number of Hospitals

    Anti-Smoking Legislation

    Culture

    Number of Museums

    Number of Cultural and Arts Organizations

    Environment

    Green Spaces (km2)

    Air Quality

    Laws or Regulations to Improve Energy Efficiency

    Retrofitted City Vehicle Fleet

    Bike Share Program

  13. GAR15 Global Exposure Dataset for Lao People's Democratic Republic

    • data.amerigeoss.org
    • data.humdata.org
    • +1more
    shp
    Updated May 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). GAR15 Global Exposure Dataset for Lao People's Democratic Republic [Dataset]. https://data.amerigeoss.org/dataset/fd3bf436-cf2e-4c82-bbc9-c05b428aa78d
    Explore at:
    shp(1051857)Available download formats
    Dataset updated
    May 26, 2023
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Laos
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  14. w

    Global Financial Inclusion (Global Findex) Database 2021 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/4653
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    India
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Excluded populations living in Northeast states and remote islands and Jammu and Kashmir. The excluded areas represent less than 10 percent of the total population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for India is 3000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  15. GAR15 Global Exposure Dataset for Korea (Democratic People's Republic of)

    • data.amerigeoss.org
    • data.humdata.org
    shp
    Updated Mar 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). GAR15 Global Exposure Dataset for Korea (Democratic People's Republic of) [Dataset]. https://data.amerigeoss.org/sq/dataset/e980fe01-dd7a-4e98-9dc2-a7feec135093
    Explore at:
    shp(993925)Available download formats
    Dataset updated
    Mar 17, 2023
    Dataset provided by
    United Nationshttp://un.org/
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  16. A

    Martinique - Population Density

    • data.amerigeoss.org
    • data.humdata.org
    geotiff
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). Martinique - Population Density [Dataset]. https://data.amerigeoss.org/dataset/worldpop-population-density-for-martinique
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Martinique
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  17. H

    Sri Lanka - Population Density

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Sri Lanka - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-sri-lanka
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    Sri Lanka
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  18. u

    Data from: DIPSER: A Dataset for In-Person Student Engagement Recognition in...

    • observatorio-cientifico.ua.es
    • scidb.cn
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel (2025). DIPSER: A Dataset for In-Person Student Engagement Recognition in the Wild [Dataset]. https://observatorio-cientifico.ua.es/documentos/67321d21aea56d4af0484172
    Explore at:
    Dataset updated
    2025
    Authors
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel
    Description

    Data DescriptionThe DIPSER dataset is designed to assess student attention and emotion in in-person classroom settings, consisting of RGB camera data, smartwatch sensor data, and labeled attention and emotion metrics. It includes multiple camera angles per student to capture posture and facial expressions, complemented by smartwatch data for inertial and biometric metrics. Attention and emotion labels are derived from self-reports and expert evaluations. The dataset includes diverse demographic groups, with data collected in real-world classroom environments, facilitating the training of machine learning models for predicting attention and correlating it with emotional states.Data Collection and Generation ProceduresThe dataset was collected in a natural classroom environment at the University of Alicante, Spain. The recording setup consisted of six general cameras positioned to capture the overall classroom context and individual cameras placed at each student’s desk. Additionally, smartwatches were used to collect biometric data, such as heart rate, accelerometer, and gyroscope readings.Experimental SessionsNine distinct educational activities were designed to ensure a comprehensive range of engagement scenarios:News Reading – Students read projected or device-displayed news.Brainstorming Session – Idea generation for problem-solving.Lecture – Passive listening to an instructor-led session.Information Organization – Synthesizing information from different sources.Lecture Test – Assessment of lecture content via mobile devices.Individual Presentations – Students present their projects.Knowledge Test – Conducted using Kahoot.Robotics Experimentation – Hands-on session with robotics.MTINY Activity Design – Development of educational activities with computational thinking.Technical SpecificationsRGB Cameras: Individual cameras recorded at 640×480 pixels, while context cameras captured at 1280×720 pixels.Frame Rate: 9-10 FPS depending on the setup.Smartwatch Sensors: Collected heart rate, accelerometer, gyroscope, rotation vector, and light sensor data at a frequency of 1–100 Hz.Data Organization and FormatsThe dataset follows a structured directory format:/groupX/experimentY/subjectZ.zip Each subject-specific folder contains:images/ (individual facial images)watch_sensors/ (sensor readings in JSON format)labels/ (engagement & emotion annotations)metadata/ (subject demographics & session details)Annotations and LabelingEach data entry includes engagement levels (1-5) and emotional states (9 categories) based on both self-reported labels and evaluations by four independent experts. A custom annotation tool was developed to ensure consistency across evaluations.Missing Data and Data QualitySynchronization: A centralized server ensured time alignment across devices. Brightness changes were used to verify synchronization.Completeness: No major missing data, except for occasional random frame drops due to embedded device performance.Data Consistency: Uniform collection methodology across sessions, ensuring high reliability.Data Processing MethodsTo enhance usability, the dataset includes preprocessed bounding boxes for face, body, and hands, along with gaze estimation and head pose annotations. These were generated using YOLO, MediaPipe, and DeepFace.File Formats and AccessibilityImages: Stored in standard JPEG format.Sensor Data: Provided as structured JSON files.Labels: Available as CSV files with timestamps.The dataset is publicly available under the CC-BY license and can be accessed along with the necessary processing scripts via the DIPSER GitHub repository.Potential Errors and LimitationsDue to camera angles, some student movements may be out of frame in collaborative sessions.Lighting conditions vary slightly across experiments.Sensor latency variations are minimal but exist due to embedded device constraints.CitationIf you find this project helpful for your research, please cite our work using the following bibtex entry:@misc{marquezcarpintero2025dipserdatasetinpersonstudent1, title={DIPSER: A Dataset for In-Person Student1 Engagement Recognition in the Wild}, author={Luis Marquez-Carpintero and Sergio Suescun-Ferrandiz and Carolina Lorenzo Álvarez and Jorge Fernandez-Herrero and Diego Viejo and Rosabel Roig-Vila and Miguel Cazorla}, year={2025}, eprint={2502.20209}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.20209}, } Usage and ReproducibilityResearchers can utilize standard tools like OpenCV, TensorFlow, and PyTorch for analysis. The dataset supports research in machine learning, affective computing, and education analytics, offering a unique resource for engagement and attention studies in real-world classroom environments.

  19. w

    Global Financial Inclusion (Global Findex) Database 2021 - Gabon

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Gabon [Dataset]. https://microdata.worldbank.org/index.php/catalog/4643
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Gabon
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Gabon is 1020.

    Mode of data collection

    Mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  20. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/

Geonames - All Cities with a population > 1000

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
csv, json, geojson, excelAvailable download formats
Dataset updated
Mar 10, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

Search
Clear search
Close search
Google apps
Main menu