63 datasets found
  1. Data from: Felonious Homicides of American Police Officers, 1977-1992

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Felonious Homicides of American Police Officers, 1977-1992 [Dataset]. https://catalog.data.gov/dataset/felonious-homicides-of-american-police-officers-1977-1992-25657
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Description

    The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.

  2. Police deaths in USA from 1791 to 2022

    • kaggle.com
    zip
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayuresh Koli (2022). Police deaths in USA from 1791 to 2022 [Dataset]. https://www.kaggle.com/datasets/mayureshkoli/police-deaths-in-usa-from-1791-to-2022
    Explore at:
    zip(5762743 bytes)Available download formats
    Dataset updated
    Dec 7, 2022
    Authors
    Mayuresh Koli
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    This dataset contains information on fatal police deaths in the United States. The data includes the victim's rank, name, department, date of death, and cause of death. The data spans from 1791 to the present day. This dataset will be updated on monthly basis. Data Scrapped from this website :- https://www.odmp.org/

    New Version Features -> With the new web scrapper I have upgraded dataset with more information. 1) The new dataset version is "police_deaths_USA_v6.csv" and "k9_deaths_USA_v6.csv". 2) Splitted the dataset into 2 different datasets 1 for Human Unit and other for K9 Unit. 3) Check out the new web scrapper code in this file "final_scrapper_program_with_comments.ipynb". 4) Also added the correction file which is needed to adjust some data points from K9 dataset. 5) Extended data of Human Unit dataset to 13 Features. 6) Extended data of K9 Unit dataset to 14 Features.

    The police_deaths dataset contains 13 variables:

    1) Rank -> Rank assigned or achieved by the police throughout their tenure.

    2) Name -> The name of the person.

    3) Age -> Age of the person.

    4) End_Of_Watch -> The death date on which the the person declared as dead.

    5) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].

    6) Cause -> The cause of the death.

    7) Department -> The department's name where the person works.

    8) State -> The state where the department is situated.

    9) Tour -> The Duration of there Tenure.

    10) Badge -> Badge of the person.

    11) Weapon -> The Weapon by which the officer has been killed.

    12) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].

    13) Summary -> Summary of the police officer and also the summary of the incident of what happened ? How he/she died ?, etc.

    The k9_deaths dataset contains 14 variables:

    1) Rank -> Rank assigned or achieved by the K9 throughout their tenure.

    2) Name -> The name of the K9.

    3) Breed -> Breed of the K9.

    4) Gender -> Gender of the K9.

    5) Age -> Age of the K9.

    6) End_Of_Watch -> The death date on which the the person declared as dead.

    7) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].

    8) Cause -> The cause of the death.

    9) Department -> The department's name where the K9 was assigned.

    10) State -> The state where the department is situated.

    11) Tour -> The Duration of there Tenure.

    12) Weapon -> The Weapon by which the officer has been killed.

    13) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].

    14) Summary -> Summary of the K9 dog and also the summary of the incident of what happened ? How he/she died ?, etc.

    Acknowledgements:

    The original dataset was collected by FiveThirtyEight and it contains police death data from 1791 to 2016. Here is the link -> https://data.world/fivethirtyeight/police-deaths.

    The reason I made this dataset is because it had not been updated since 2016 and the scrapping script was outdated, so I decided to make a new scrapper and update the dataset till present. I got this idea from the FiveThirtyEight group and a fellow kaggler, Satoshi Datamoto, who uploaded the dataset on kaggle. Thank you for inspiration.

    Tableau Visualization link :- https://public.tableau.com/app/profile/mayuresh.koli/viz/USALawEnforcementLineofDutyDeaths/main_dashboard

  3. Police Killings US

    • kaggle.com
    zip
    Updated Feb 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Connor (2022). Police Killings US [Dataset]. https://www.kaggle.com/datasets/azizozmen/police-killings-us
    Explore at:
    zip(62816 bytes)Available download formats
    Dataset updated
    Feb 6, 2022
    Authors
    Matthew Connor
    Description

    "In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article

    For more information about this story

    This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

    2016 PoliceKillingUS DATASET
    2017 PoliceKillingUS DATASET
    2018 PoliceKillingUS DATASET
    2019 PoliceKillingUS DATASET
    2020 PoliceKillingUS DATASET

    Features at the Dataset:

    The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:

    • id: a unique identifier for each victim
    • name: the name of the victim
    • date: the date of the fatal shooting in YYYY-MM-DD format
    • manner_of_death: shot, shot and Tasered
    • armed: indicates that the victim was armed with some sort of implement that a police officer believed could inflict harm
      • undetermined: it is not known whether or not the victim had a weapon
      • unknown: the victim was armed, but it is not known what the object was
      • unarmed: the victim was not armed
    • age: the age of the victim
    • gender: the gender of the victim. The Post identifies victims by the gender they identify with if reports indicate that it differs from their biological sex.
      • M: Male
      • F: Female
      • None: unknown
    • race:
      • W: White, non-Hispanic
      • B: Black, non-Hispanic
      • A: Asian
      • N: Native American
      • H: Hispanic
      • O: Other
      • None: unknown
    • city: the municipality where the fatal shooting took place. Note that in some cases this field may contain a county name if a more specific municipality is unavailable or unknown.
    • state: two-letter postal code abbreviation
    • signs of mental illness: News reports have indicated the victim had a history of mental health issues, expressed suicidal intentions or was experiencing mental distress at the time of the shooting.
    • threat_level: The threat_level column was used to flag incidents for the story by Amy Brittain in October 2015. http://www.washingtonpost.com/sf/investigative/2015/10/24/on-duty-under-fire/ As described in the story, the general criteria for the attack label was that there was the most direct and immediate threat to life. That would include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The other and undetermined categories represent all remaining cases. Other includes many incidents where officers or others faced significant threats.
    • flee: News reports have indicated the victim was moving away from officers
      • Foot
      • Car
      • Not fleeing

    The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer w...

  4. o

    Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and...

    • openicpsr.org
    Updated Jun 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1975-2015 [Dataset]. http://doi.org/10.3886/E102180V3
    Explore at:
    Dataset updated
    Jun 6, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1975 - 2015
    Area covered
    United States
    Description
    Version 3 release notes:
    • Fix bug where Philadelphia Police Department had incorrect FIPS county code.

    The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. Each data set contains over 2,200 columns and has a wealth of information about the circumstances of assaults on officers.

    All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. It was then cleaned in R. The "cleaning" just means that column names were standardized (different years have slightly different spellings for many columns). Standardization of column names is necessary to stack multiple years together. Categorical variables (e.g. state) were also standardized (i.e. fix spelling errors).

    About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself.

    I did not make any changes to the numeric columns except for the following. A few years of data had the values "blank" or "missing" as indicators of missing values. Rows in otherwise numeric columns (e.g. jan_asslt_no_injury_knife) with these values were replaced with NA. There were three obvious data entry errors in officers killed by felony/accident that I changed to NA.

    In 1978 the agency "pittsburgh" (ORI = PAPPD00) reported 576 officers killed by accident during March.
    In 1979 the agency "metuchen" (ORI = NJ01210) reported 991 officers killed by felony during August.
    In 1990 the agency "penobscot state police" (ORI = ME010SP) reported 860 officers killed by accident during July.

    No other changes to numeric columns were made.

    Each zip file contains all years as individual monthly files of the specified data type It also includes a file with all years aggregated yearly and stacked into a single data set. Please note that each monthly file is quite large (2,200+ columns) so it may take time to download the zip file and open each data file.

    For the R code used to clean this data, see here.
    https://github.com/jacobkap/crime_data.

    The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:

    "The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which officers are killed or assaulted, describe the incidents statistically, and publish the data to aid agencies in developing policies to improve officer safety.

    "... agencies must record assaults on sworn officers. Reporting agencies must count all assaults that resulted in serious injury or assaults in which a weapon was used that could have caused serious injury or death. They must include other assaults not causing injury if the assault involved more than mere verbal abuse or minor resistance to an arrest. In other words, agencies must include in this section all assaults on officers, whether or not the officers sustained injuries."

    If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com



  5. Dataset on US police killings 2013-2024

    • kaggle.com
    zip
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lord Voldemort (2024). Dataset on US police killings 2013-2024 [Dataset]. https://www.kaggle.com/datasets/lordvoldemortt/dataset-on-us-police-killings-2013-2024
    Explore at:
    zip(8405081 bytes)Available download formats
    Dataset updated
    May 14, 2024
    Authors
    Lord Voldemort
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    This data was obtained from https://mappingpoliceviolence.us/.

    Mapping Police Violence is a 501(c)(3) organization that publishes the most comprehensive and up-to-date data on police violence in America to support transformative change.

    This is a database set on openly sharing information on police violence in America.

    Some information on this data according to their website: Our data has been meticulously sourced from official police use of force data collection programs in states like California, Texas and Virginia, combined with nationwide data from The Gun Violence Archive and the Fatal Encounters database, two impartial crowdsourced databases. We've also done extensive original research to further improve the quality and completeness of the data; searching social media, obituaries, criminal records databases, police reports and other sources to identify the race of 90 percent of all victims in the database.

    We believe the data represented on this site is the most comprehensive accounting of people killed by police since 2013. Note that the Mapping Police Violence database is more comprehensive than the Washington Post police shootings database: while WaPo only tracks cases where people are fatally shot by on-duty police officers, our database includes additional incidents such as cases where police kill someone through use of a chokehold, baton, taser or other means as well as cases such as killings by off-duty police. A recent report from the Bureau of Justice Statistics estimated approximately 1,200 people were killed by police between June, 2015 and May, 2016. Our database identified 1,100 people killed by police over this time period. While there are undoubtedly police killings that are not included in our database (namely, those that go unreported by the media), these estimates suggest that our database captures 92% of the total number of police killings that have occurred since 2013. We hope these data will be used to provide greater transparency and accountability for police departments as part of the ongoing work to end police violence in America.

  6. People shot to death by U.S. police 2017-2024, by race

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, People shot to death by U.S. police 2017-2024, by race [Dataset]. https://www.statista.com/statistics/585152/people-shot-to-death-by-us-police-by-race/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Sadly, the trend of fatal police shootings in the United States seems to only be increasing, with a total 1,173 civilians having been shot, 248 of whom were Black, as of December 2024. In 2023, there were 1,164 fatal police shootings. Additionally, the rate of fatal police shootings among Black Americans was much higher than that for any other ethnicity, standing at 6.1 fatal shootings per million of the population per year between 2015 and 2024. Police brutality in the U.S. In recent years, particularly since the fatal shooting of Michael Brown in Ferguson, Missouri in 2014, police brutality has become a hot button issue in the United States. The number of homicides committed by police in the United States is often compared to those in countries such as England, where the number is significantly lower. Black Lives Matter The Black Lives Matter Movement, formed in 2013, has been a vocal part of the movement against police brutality in the U.S. by organizing “die-ins”, marches, and demonstrations in response to the killings of black men and women by police. While Black Lives Matter has become a controversial movement within the U.S., it has brought more attention to the number and frequency of police shootings of civilians.

  7. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law...

    • openicpsr.org
    Updated Mar 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1960-2021 [Dataset]. http://doi.org/10.3886/E102180V12
    Explore at:
    Dataset updated
    Mar 25, 2018
    Dataset provided by
    Princeton University
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2020
    Area covered
    United States
    Description

    For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 12 release notes:Adds 2021 data.Version 11 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will (probably, I haven't seen confirmation either way) be the last LEOKA data they release. Changes .rda file to .rds.Version 10 release notes:Changes release notes description, does not change data.Version 9 release notes:Adds data for 2019.Version 8 release notes:Fix bug for years 1960-1971 where the number of months reported variable was incorrectly down by 1 month. I recommend caution when using these years as they only report either 0 or 12 months of the year, which differs from every other year in the data. Added the variable officers_killed_total which is the sum of officers_killed_by_felony and officers_killed_by_accident.Version 7 release notes:Adds data from 2018Version 6 release notes:Adds data in the following formats: SPSS and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971. This is because those variables weren't collected prior to 1971. These should be NA, not 0 but I'm keeping it as 0 to be consistent with the raw data. Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which

  8. Police Shootings in the United States: 2015-2024

    • kaggle.com
    zip
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aquib Ahmad (2024). Police Shootings in the United States: 2015-2024 [Dataset]. https://www.kaggle.com/datasets/aquibahmad7/police-shootings-in-the-united-states-2015-2024
    Explore at:
    zip(295593 bytes)Available download formats
    Dataset updated
    Jul 23, 2024
    Authors
    Aquib Ahmad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset, compiled by The Washington Post, logs every person shot and killed by an on-duty police officer in the United States from 2015 to 2024. Following the 2014 shooting of Michael Brown in Ferguson, it was discovered that FBI reports were significantly undercounted, with only a third of fatal shootings recorded by 2021. This comprehensive database aims to fill that gap and provide detailed information on each incident, including the police departments involved, to enhance accountability.

  9. Police Deaths

    • kaggle.com
    zip
    Updated Sep 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mysar ahmad bhat (2021). Police Deaths [Dataset]. https://www.kaggle.com/mysarahmadbhat/police-deaths
    Explore at:
    zip(745159 bytes)Available download formats
    Dataset updated
    Sep 13, 2021
    Authors
    mysar ahmad bhat
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    For most of the last 35 years, the number of police officers who die on the job in the U.S. declined, but one grim statistic held steady: The most common cause of death was gun homicide. Those numbers grew significantly on Thursday night when five police officers were shot and killed at a demonstration in Dallas that was protesting recent killings by police officers in other states. President Obama called it “a vicious, calculated and despicable attack on law enforcement.” Per officer, policing had become even safer in recent years than the overall death counts suggest, which makes the Dallas shooting that much more of a singular, horrific massacre. That’s because the decline in the number of deaths by police officers in the line of duty has occurred as the number of officers has risen. The number of full-time, sworn local police officers increased by 35 percent from 1987 to 2013, according to the Bureau of Justice Statistics. During that same period, the number of officers killed declined by 34 percent. 1 And a growing share of officer deaths are happening in accidental or deliberate car collisions.

  10. Data from: Police Use of Deadly Force, 1970-1979

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Police Use of Deadly Force, 1970-1979 [Dataset]. https://catalog.data.gov/dataset/police-use-of-deadly-force-1970-1979-fdf67
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Description

    The circumstances surrounding "justifiable homicides" by police are the focus of this data collection, which examines occurrences in 57 United States cities during the period 1970-1979. Homicides by on- and off-duty police officers serving communities of 250,000 or more were studied. Data were collected through a survey questionnaire sent to police executives of the 57 cities. The Federal Bureau of Investigation supplied data on justifiable homicides by police, including age, sex, and race data. The variables include number of sworn officers, number of supervisory officers, average years of education, department regulations about issues such as off-duty employment, uniforms, carrying firearms, and disciplinary actions, in-service training, pre-service training, firearms practice, assignments without firearms, on-duty deaths, and off-duty deaths. The study was funded by a grant from the National Institute of Justice to the International Association of Chiefs of Police.

  11. Uniform Crime Reporting Program Data: Police Employee (LEOKA) Data, United...

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, delimited, r +3
    Updated Jun 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Federal Bureau of Investigation (2018). Uniform Crime Reporting Program Data: Police Employee (LEOKA) Data, United States, 2016 [Dataset]. http://doi.org/10.3886/ICPSR37062.v1
    Explore at:
    spss, ascii, sas, delimited, stata, rAvailable download formats
    Dataset updated
    Jun 29, 2018
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Federal Bureau of Investigation
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/37062/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37062/terms

    Time period covered
    2016
    Area covered
    United States
    Description

    The Uniform Crime Reporting Program Data, Police Employee Data, 2016 file contains monthly data on felonious or accidental killings and assaults upon United States law enforcement officers acting in the line of duty. The Federal Bureau of Investigation (FBI) assembled the data and processed them from UCR Master Police Employee (LEOKA) data tapes. Each agency record in the file includes the following summary variables: state code, population group code, geographic division, Metropolitan Statistical Area code, and agency name. These variables afford considerable flexibility in creating subsets or aggregations of the data. Since 1930, the Federal Bureau of Investigation has compiled the Uniform Crime Reports (UCR) to serve as a periodic nationwide assessment of reported crimes not available elsewhere in the criminal justice system. Each year, this information is reported in four types of files: (1) Offenses Known and Clearances by Arrest, (2) Property Stolen and Recovered, (3) Supplementary Homicide Reports (SHR), and (4) Police Employee (LEOKA) Data. The Police Employee (LEOKA) Data provide information about law enforcement officers killed or assaulted (hence the acronym, LEOKA) in the line of duty. The variables created from the LEOKA forms provide in-depth information on the circumstances surrounding killings or assaults, including type of call answered, type of weapon used, and type of patrol the officers were on.

  12. Data from: Uniform Crime Reporting Program Data [United States]: Police...

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, delimited, sas +2
    Updated Jun 10, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Federal Bureau of Investigation (2008). Uniform Crime Reporting Program Data [United States]: Police Employee (LEOKA) Data, 2006 [Dataset]. http://doi.org/10.3886/ICPSR22402.v1
    Explore at:
    delimited, stata, spss, ascii, sasAvailable download formats
    Dataset updated
    Jun 10, 2008
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Justice. Federal Bureau of Investigation
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/22402/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/22402/terms

    Time period covered
    2006
    Area covered
    United States
    Description

    Since 1930, the Federal Bureau of Investigation has compiled the Uniform Crime Reports (UCR) to serve as a periodic nationwide assessment of reported crimes not available elsewhere in the criminal justice system. Each year, this information is reported in four types of files: (1) Offenses Known and Clearances by Arrest, (2) Property Stolen and Recovered, (3) Supplementary Homicide Reports (SHR), and (4) Police Employee (LEOKA) Data. The Police Employee (LEOKA) Data provide information about law enforcement officers killed or assaulted (hence the acronym, LEOKA) in the line of duty. The variables created from the LEOKA forms provide in-depth information on the circumstances surrounding killings or assaults, including type of call answered, type of weapon used, and type of patrol the officers were on.

  13. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law...

    • openicpsr.org
    • search.gesis.org
    Updated Mar 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1960-2018 [Dataset]. http://doi.org/10.3886/E102180V7
    Explore at:
    Dataset updated
    Mar 25, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2018
    Area covered
    United States
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 7 release notes:Add data from 2018Version 6 release notes:Adds data in the following formats: SPSS and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971.Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. See the R code for a complete list. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data.The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which officers are killed or assaulted, describe the incidents statistically, and publish the data to aid agencies in developing policies to improve officer safety."... agencies must record assaults on sworn officers. Reporting agencies must count all assaults that resulted in serious injury or assaults in which a weapon was used that could have caused serious injury or death. They must include other assaults not causing injury if the assault involved more than mere verbal abuse or minor resistance to an arrest. In other words, agencies must include in this section all assaults on officers, whether or not the officers sustained injuries."

  14. Data from: Police Officer Deaths in the U.S.

    • kaggle.com
    zip
    Updated Nov 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2016). Police Officer Deaths in the U.S. [Dataset]. https://www.kaggle.com/fivethirtyeight/police-officer-deaths-in-the-us
    Explore at:
    zip(745159 bytes)Available download formats
    Dataset updated
    Nov 5, 2016
    Dataset authored and provided by
    FiveThirtyEight
    Area covered
    United States
    Description

    Context

    This dataset contains data behind the story, The Dallas Shooting Was Among The Deadliest For Police In U.S. History. The data are scraped from ODMP and capture information on all tracked on-duty police officer deaths in the U.S. broken down by cause from 1971 until 2016.

    Content

    This dataset tags every entry as human or canine. There are 10 variables:

    • person

    • dept: Department

    • eow: End of watch

    • cause: Cause of death

    • cause_short: Shortened cause of death

    • date: Cleaned EOW

    • year: Year from EOW

    • canine

    • dept_name

    • state

    Inspiration

    Using the data, can you determine the temporal trend of police officer deaths by cause? By state? By department?

    Acknowledgements

    The primary source of data is the Officer Down Memorial Page (ODMP), started in 1996 by a college student who is now a police officer and who continues to maintain the database. The original data and code can be found on the FiveThirtyEight GitHub.

  15. d

    Traffic Crashes Resulting in Fatality

    • catalog.data.gov
    • data.sfgov.org
    • +2more
    Updated Nov 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Traffic Crashes Resulting in Fatality [Dataset]. https://catalog.data.gov/dataset/traffic-crashes-resulting-in-fatality
    Explore at:
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This table contains all fatalities resulting from a traffic crash in the City of San Francisco. Fatality year-to-date crash data is obtained from the Office of the Chief Medical Examiner (OME) death records, and only includes those cases that meet the San Francisco Vision Zero Fatality Protocol maintained by the San Francisco Department of Public Health (SFDPH), San Francisco Police Department (SFPD), and San Francisco Municipal Transportation Agency (SFMTA). Injury crash data is obtained from SFPD’s Interim Collision System for 2018 to YTD, Crossroads Software Traffic Collision Database (CR) for years 2013-2017 and the Statewide Integrated Transportation Record System (SWITRS) maintained by the California Highway Patrol for all years prior to 2013. Only crashes with valid geographic information are mapped. All geocodable crash data is represented on the simplified San Francisco street centerline model maintained by the Department of Public Works (SFDPW). Collision injury data is queried and aggregated on a quarterly basis. Crashes occurring at complex intersections with multiple roadways are mapped onto a single point and injury and fatality crashes occurring on highways are excluded. The fatality table contains information about each party injured or killed in the collision, including any passengers. B. HOW THE DATASET IS CREATED Traffic crash injury data is collected from the California Highway Patrol 555 Crash Report as submitted by the police officer within 30 days after the crash occurred. All fields that match the SWITRS data schema are programmatically extracted, de-identified, geocoded, and loaded into TransBASE. See Section D below for details regarding TransBASE. This table is filtered for fatal traffic crashes. C. UPDATE PROCESS After review by SFPD and SFDPH staff, the data is made publicly available approximately a month after the end of the previous quarter (May for Q1, August for Q2, November for Q3, and February for Q4). D. HOW TO USE THIS DATASET This data is being provided as public information as defined under San Francisco and California public records laws. SFDPH, SFMTA, and SFPD cannot limit or restrict the use of this data or its interpretation by other parties in any way. Where the data is communicated, distributed, reproduced, mapped, or used in any other way, the user should acknowledge the Vision Zero initiative and the TransBASE database as the source of the data, provide a reference to the original data source where also applicable, include the date the data was pulled, and note any caveats specified in the associated metadata documentation provided. However, users should not attribute their analysis or interpretation of this data to the City of San Francisco. While the data has been collected and/or produced for the use of the City of San Francisco, it cannot guarantee its accuracy or completeness. Accordingly, the City of San Francisco, including SFDPH, SFMTA, and SFPD make no representation as to the accuracy of the information or its suitability for any purpose and disclaim any liability for omissions or errors that may be contained therein. As all data is associated with methodological assumptions and limitations, the City recommends that users review methodological documentation associated with the data prior to its analysis, interpretation, or communication. TransBASE is a geospatially enabled database maintained by SFDPH that currently includes over 200 spatially referenced variables from multiple agencies and across a range of geographic scales, including infrastructure, transportation, zoning, sociodemographic, and collision data, all linked to an intersection or street segment. TransBASE facilitates a data-driven approach to understanding and addressing transportation-related health issues, informed by a large and growing evidence base regarding the importance of transportation system design and land u

  16. Quantifying underreporting of law-enforcement-related deaths in United...

    • plos.figshare.com
    pdf
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin M. Feldman; Sofia Gruskin; Brent A. Coull; Nancy Krieger (2023). Quantifying underreporting of law-enforcement-related deaths in United States vital statistics and news-media-based data sources: A capture–recapture analysis [Dataset]. http://doi.org/10.1371/journal.pmed.1002399
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Justin M. Feldman; Sofia Gruskin; Brent A. Coull; Nancy Krieger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    BackgroundPrior research suggests that United States governmental sources documenting the number of law-enforcement-related deaths (i.e., fatalities due to injuries inflicted by law enforcement officers) undercount these incidents. The National Vital Statistics System (NVSS), administered by the federal government and based on state death certificate data, identifies such deaths by assigning them diagnostic codes corresponding to “legal intervention” in accordance with the International Classification of Diseases–10th Revision (ICD-10). Newer, nongovernmental databases track law-enforcement-related deaths by compiling news media reports and provide an opportunity to assess the magnitude and determinants of suspected NVSS underreporting. Our a priori hypotheses were that underreporting by the NVSS would exceed that by the news media sources, and that underreporting rates would be higher for decedents of color versus white, decedents in lower versus higher income counties, decedents killed by non-firearm (e.g., Taser) versus firearm mechanisms, and deaths recorded by a medical examiner versus coroner.Methods and findingsWe created a new US-wide dataset by matching cases reported in a nongovernmental, news-media-based dataset produced by the newspaper The Guardian, The Counted, to identifiable NVSS mortality records for 2015. We conducted 2 main analyses for this cross-sectional study: (1) an estimate of the total number of deaths and the proportion unreported by each source using capture–recapture analysis and (2) an assessment of correlates of underreporting of law-enforcement-related deaths (demographic characteristics of the decedent, mechanism of death, death investigator type [medical examiner versus coroner], county median income, and county urbanicity) in the NVSS using multilevel logistic regression. We estimated that the total number of law-enforcement-related deaths in 2015 was 1,166 (95% CI: 1,153, 1,184). There were 599 deaths reported in The Counted only, 36 reported in the NVSS only, 487 reported in both lists, and an estimated 44 (95% CI: 31, 62) not reported in either source. The NVSS documented 44.9% (95% CI: 44.2%, 45.4%) of the total number of deaths, and The Counted documented 93.1% (95% CI: 91.7%, 94.2%). In a multivariable mixed-effects logistic model that controlled for all individual- and county-level covariates, decedents injured by non-firearm mechanisms had higher odds of underreporting in the NVSS than those injured by firearms (odds ratio [OR]: 68.2; 95% CI: 15.7, 297.5; p < 0.01), and underreporting was also more likely outside of the highest-income-quintile counties (OR for the lowest versus highest income quintile: 10.1; 95% CI: 2.4, 42.8; p < 0.01). There was no statistically significant difference in the odds of underreporting in the NVSS for deaths certified by coroners compared to medical examiners, and the odds of underreporting did not vary by race/ethnicity. One limitation of our analyses is that we were unable to examine the characteristics of cases that were unreported in The Counted.ConclusionsThe media-based source, The Counted, reported a considerably higher proportion of law-enforcement-related deaths than the NVSS, which failed to report a majority of these incidents. For the NVSS, rates of underreporting were higher in lower income counties and for decedents killed by non-firearm mechanisms. There was no evidence suggesting that underreporting varied by death investigator type (medical examiner versus coroner) or race/ethnicity.

  17. FiveThirtyEight Police Deaths Dataset

    • kaggle.com
    zip
    Updated Apr 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Police Deaths Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-police-deaths-dataset
    Explore at:
    zip(1307578 bytes)Available download formats
    Dataset updated
    Apr 26, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Police Deaths

    This directory contains the data and code behind the story The Dallas Shooting Was Among The Deadliest For Police In U.S. History. The primary source of data is the Officer Down Memorial Page (ODMP), started in 1996 by a college student who is now a police officer and who continues to maintain the database.

    File descriptions:

    FileDescription
    scrape.RScrapes data on the death of every officer tracked on ODMP
    all_data.csvOutput of scrape.R
    clean.RTakes the data in all_data.csv, cleans it and formats the dates correctly, and tags every entry as human or canine.
    clean_data.csvOutput of clean.R
    plot.RSummarizes police deaths by category and generates a plot similar to the one below

    https://i1.wp.com/espnfivethirtyeight.files.wordpress.com/2016/07/bialik-flowers-king-police-deaths-1.png" alt="">

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  18. a

    Louisville Metro KY - Assaulted Officers

    • louisville-metro-opendata-lojic.hub.arcgis.com
    • data.lojic.org
    • +5more
    Updated May 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2022). Louisville Metro KY - Assaulted Officers [Dataset]. https://louisville-metro-opendata-lojic.hub.arcgis.com/datasets/LOJIC::louisville-metro-ky-assaulted-officers
    Explore at:
    Dataset updated
    May 25, 2022
    Dataset authored and provided by
    Louisville/Jefferson County Information Consortium
    License

    https://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license

    Area covered
    Kentucky, Louisville
    Description

    Note: Due to a system migration, this data will cease to update on March 14th, 2023. The current projection is to restart the updates on or around July 17th, 2024.Incidents of Officers assaulted by individuals since 2010.Data Dictionary:ID - the row numberDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredCRIME_TYPE - the crime type category (assault or homicide)NIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedLEOKA_APPLIES - whether or not the incident is reported to the Center for the Study of Law Enforcement Officers Killed and Assaulted (LEOKA). For more information visit https://leoka.org/OFFICER_KILLED - whether or not an officer was killed due to the incidentTYPE_OF_ASSIGNMENT - how the officer was assigned at the time of the incident (e.g. ONE-MAN VEHICLE ALONE (UNIFORMED OFFICER))TYPE_OF_ACTIVITY - the type of activity the officer was doing at the time of the incident (e.g. RESPONDING TO DISTURBANCE CALLS)OFFENSE_CITY - the city associated to the incident block locationOFFENSE_ZIP - the zip code associated to the incident block location

  19. Uniform Crime Reporting Program Data Series

    • catalog.data.gov
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Uniform Crime Reporting Program Data Series [Dataset]. https://catalog.data.gov/dataset/uniform-crime-reporting-program-data-series-16edb
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    Investigator(s): Federal Bureau of Investigation Since 1930, the Federal Bureau of Investigation (FBI) has compiled the Uniform Crime Reports (UCR) to serve as periodic nationwide assessments of reported crimes not available elsewhere in the criminal justice system. With the 1977 data, the title was expanded to Uniform Crime Reporting Program Data. Each year, participating law enforcement agencies contribute reports to the FBI either directly or through their state reporting programs. ICPSR archives the UCR data as five separate components: (1) summary data, (2) county-level data, (3) incident-level data (National Incident-Based Reporting System [NIBRS]), (4) hate crime data, and (5) various, mostly nonrecurring, data collections. Summary data are reported in four types of files: (a) Offenses Known and Clearances by Arrest, (b) Property Stolen and Recovered, (c) Supplementary Homicide Reports (SHR), and (d) Police Employee (LEOKA) Data (Law Enforcement Officers Killed or Assaulted). The county-level data provide counts of arrests and offenses aggregated to the county level. County populations are also reported. In the late 1970s, new ways to look at crime were studied. The UCR program was subsequently expanded to capture incident-level data with the implementation of the National Incident-Based Reporting System. The NIBRS data focus on various aspects of a crime incident. The gathering of hate crime data by the UCR program was begun in 1990. Hate crimes are defined as crimes that manifest evidence of prejudice based on race, religion, sexual orientation, or ethnicity. In September 1994, disabilities, both physical and mental, were added to the list. The fifth component of ICPSR's UCR holdings is comprised of various collections, many of which are nonrecurring and prepared by individual researchers. These collections go beyond the scope of the standard UCR collections provided by the FBI, either by including data for a range of years or by focusing on other aspects of analysis. NACJD has produced resource guides on UCR and on NIBRS data.

  20. A Multi-Level Bayesian Analysis of Racial Bias in Police Shootings at the...

    • plos.figshare.com
    zip
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody T. Ross (2023). A Multi-Level Bayesian Analysis of Racial Bias in Police Shootings at the County-Level in the United States, 2011–2014 [Dataset]. http://doi.org/10.1371/journal.pone.0141854
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Cody T. Ross
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    A geographically-resolved, multi-level Bayesian model is used to analyze the data presented in the U.S. Police-Shooting Database (USPSD) in order to investigate the extent of racial bias in the shooting of American civilians by police officers in recent years. In contrast to previous work that relied on the FBI’s Supplemental Homicide Reports that were constructed from self-reported cases of police-involved homicide, this data set is less likely to be biased by police reporting practices. County-specific relative risk outcomes of being shot by police are estimated as a function of the interaction of: 1) whether suspects/civilians were armed or unarmed, and 2) the race/ethnicity of the suspects/civilians. The results provide evidence of a significant bias in the killing of unarmed black Americans relative to unarmed white Americans, in that the probability of being {black, unarmed, and shot by police} is about 3.49 times the probability of being {white, unarmed, and shot by police} on average. Furthermore, the results of multi-level modeling show that there exists significant heterogeneity across counties in the extent of racial bias in police shootings, with some counties showing relative risk ratios of 20 to 1 or more. Finally, analysis of police shooting data as a function of county-level predictors suggests that racial bias in police shootings is most likely to emerge in police departments in larger metropolitan counties with low median incomes and a sizable portion of black residents, especially when there is high financial inequality in that county. There is no relationship between county-level racial bias in police shootings and crime rates (even race-specific crime rates), meaning that the racial bias observed in police shootings in this data set is not explainable as a response to local-level crime rates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institute of Justice (2025). Felonious Homicides of American Police Officers, 1977-1992 [Dataset]. https://catalog.data.gov/dataset/felonious-homicides-of-american-police-officers-1977-1992-25657
Organization logo

Data from: Felonious Homicides of American Police Officers, 1977-1992

Related Article
Explore at:
Dataset updated
Nov 14, 2025
Dataset provided by
National Institute of Justicehttp://nij.ojp.gov/
Description

The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.

Search
Clear search
Close search
Google apps
Main menu