47 datasets found
  1. Data from: Felonious Homicides of American Police Officers, 1977-1992

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Felonious Homicides of American Police Officers, 1977-1992 [Dataset]. https://catalog.data.gov/dataset/felonious-homicides-of-american-police-officers-1977-1992-25657
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Description

    The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.

  2. People shot to death by U.S. police 2017-2024, by race

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). People shot to death by U.S. police 2017-2024, by race [Dataset]. https://www.statista.com/statistics/585152/people-shot-to-death-by-us-police-by-race/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Sadly, the trend of fatal police shootings in the United States seems to only be increasing, with a total 1,173 civilians having been shot, 248 of whom were Black, as of December 2024. In 2023, there were 1,164 fatal police shootings. Additionally, the rate of fatal police shootings among Black Americans was much higher than that for any other ethnicity, standing at 6.1 fatal shootings per million of the population per year between 2015 and 2024. Police brutality in the U.S. In recent years, particularly since the fatal shooting of Michael Brown in Ferguson, Missouri in 2014, police brutality has become a hot button issue in the United States. The number of homicides committed by police in the United States is often compared to those in countries such as England, where the number is significantly lower. Black Lives Matter The Black Lives Matter Movement, formed in 2013, has been a vocal part of the movement against police brutality in the U.S. by organizing “die-ins”, marches, and demonstrations in response to the killings of black men and women by police. While Black Lives Matter has become a controversial movement within the U.S., it has brought more attention to the number and frequency of police shootings of civilians.

  3. o

    Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and...

    • openicpsr.org
    Updated Jun 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1975-2015 [Dataset]. http://doi.org/10.3886/E102180V3
    Explore at:
    Dataset updated
    Jun 6, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1975 - 2015
    Area covered
    United States
    Description
    Version 3 release notes:
    • Fix bug where Philadelphia Police Department had incorrect FIPS county code.

    The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. Each data set contains over 2,200 columns and has a wealth of information about the circumstances of assaults on officers.

    All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. It was then cleaned in R. The "cleaning" just means that column names were standardized (different years have slightly different spellings for many columns). Standardization of column names is necessary to stack multiple years together. Categorical variables (e.g. state) were also standardized (i.e. fix spelling errors).

    About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself.

    I did not make any changes to the numeric columns except for the following. A few years of data had the values "blank" or "missing" as indicators of missing values. Rows in otherwise numeric columns (e.g. jan_asslt_no_injury_knife) with these values were replaced with NA. There were three obvious data entry errors in officers killed by felony/accident that I changed to NA.

    In 1978 the agency "pittsburgh" (ORI = PAPPD00) reported 576 officers killed by accident during March.
    In 1979 the agency "metuchen" (ORI = NJ01210) reported 991 officers killed by felony during August.
    In 1990 the agency "penobscot state police" (ORI = ME010SP) reported 860 officers killed by accident during July.

    No other changes to numeric columns were made.

    Each zip file contains all years as individual monthly files of the specified data type It also includes a file with all years aggregated yearly and stacked into a single data set. Please note that each monthly file is quite large (2,200+ columns) so it may take time to download the zip file and open each data file.

    For the R code used to clean this data, see here.
    https://github.com/jacobkap/crime_data.

    The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:

    "The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which officers are killed or assaulted, describe the incidents statistically, and publish the data to aid agencies in developing policies to improve officer safety.

    "... agencies must record assaults on sworn officers. Reporting agencies must count all assaults that resulted in serious injury or assaults in which a weapon was used that could have caused serious injury or death. They must include other assaults not causing injury if the assault involved more than mere verbal abuse or minor resistance to an arrest. In other words, agencies must include in this section all assaults on officers, whether or not the officers sustained injuries."

    If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com



  4. Police Officer Memorial Honor Roll: Beginning 1791

    • data.ny.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Division of Criminal Justice Services (2025). Police Officer Memorial Honor Roll: Beginning 1791 [Dataset]. https://data.ny.gov/Public-Safety/Police-Officer-Memorial-Honor-Roll-Beginning-1791/psym-z9ae
    Explore at:
    xml, csv, application/rdfxml, json, application/rssxml, tsvAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    New York State Division of Criminal Justice Services
    Description

    A listing of the police officers from around New York State who died while in the performance of their duties. The Office of Public Safety (OPS) of the NYS Division of Criminal Justice Services (DCJS) facilitates and provides support services for all activities surrounding the New York State Police Officers Memorial. A Remembrance Ceremony is held at the Memorial each year during the month of May.

  5. A

    ‘Police Killings US’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Police Killings US’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-police-killings-us-57e7/latest
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Police Killings US’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/azizozmen/police-killings-us on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    "In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article

    For more information about this story

    This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

    2016 PoliceKillingUS DATASET
    2017 PoliceKillingUS DATASET
    2018 PoliceKillingUS DATASET
    2019 PoliceKillingUS DATASET
    2020 PoliceKillingUS DATASET

    Features at the Dataset:

    The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:

    • id: a unique identifier for each victim
    • name: the name of the victim
    • date: the date of the fatal shooting in YYYY-MM-DD format
    • manner_of_death: shot, shot and Tasered
    • armed: indicates that the victim was armed with some sort of implement that a police officer believed could inflict harm
      • undetermined: it is not known whether or not the victim had a weapon
      • unknown: the victim was armed, but it is not known what the object was
      • unarmed: the victim was not armed
    • age: the age of the victim
    • gender: the gender of the victim. The Post identifies victims by the gender they identify with if reports indicate that it differs from their biological sex.
      • M: Male
      • F: Female
      • None: unknown
    • race:
      • W: White, non-Hispanic
      • B: Black, non-Hispanic
      • A: Asian
      • N: Native American
      • H: Hispanic
      • O: Other
      • None: unknown
    • city: the municipality where the fatal shooting took place. Note that in some cases this field may contain a county name if a more specific municipality is unavailable or unknown.
    • state: two-letter postal code abbreviation
    • signs of mental illness: News reports have indicated the victim had a history of mental health issues, expressed suicidal intentions or was experiencing mental distress at the time of the shooting.
    • threat_level: The threat_level column was used to flag incidents for the story by Amy Brittain in October 2015. http://www.washingtonpost.com/sf/investigative/2015/10/24/on-duty-under-fire/ As described in the story, the general criteria for the attack label was that there was the most direct and immediate threat to life. That would include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The other and undetermined categories represent all remaining cases. Other includes many incidents where officers or others faced significant threats.
    • flee: News reports have indicated the victim was moving away from officers
      • Foot
      • Car
      • Not fleeing

    The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer was wearing a body camera and it may have recorded some portion of the incident.

    SOURCE

    --- Original source retains full ownership of the source dataset ---

  6. Uniform Crime Reporting Program Data [United States]: Police Employee...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Uniform Crime Reporting Program Data [United States]: Police Employee (LEOKA) Data, 1999 [Dataset]. https://catalog.data.gov/dataset/uniform-crime-reporting-program-data-united-states-police-employee-leoka-data-1999-3d1ed
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Area covered
    United States
    Description

    Since 1930, the Federal Bureau of Investigation has compiled the Uniform Crime Reports (UCR) to serve as a periodic nationwide assessment of reported crimes not available elsewhere in the criminal justice system. Each year, this information is reported in four types of files: (1) Offenses Known and Clearances by Arrest, (2) Property Stolen and Recovered, (3) Supplementary Homicide Reports (SHR), and (4) Police Employee (LEOKA) Data. The Police Employee (LEOKA) Data provide information about law enforcement officers killed or assaulted (hence the acronym, LEOKA) in the line of duty. The variables created from the LEOKA forms provide in-depth information on the circumstances surrounding killings or assaults, including type of call answered, type of weapon used, and type of patrol the officers were on.

  7. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law...

    • openicpsr.org
    Updated Mar 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1960-2022 [Dataset]. http://doi.org/10.3886/E102180V13
    Explore at:
    Dataset updated
    Mar 25, 2018
    Dataset provided by
    Princeton University
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2020
    Area covered
    United States
    Description

    For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 13 release notes:Adds 2022 dataVersion 12 release notes:Adds 2021 data.Version 11 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will (probably, I haven't seen confirmation either way) be the last LEOKA data they release. Changes .rda file to .rds.Version 10 release notes:Changes release notes description, does not change data.Version 9 release notes:Adds data for 2019.Version 8 release notes:Fix bug for years 1960-1971 where the number of months reported variable was incorrectly down by 1 month. I recommend caution when using these years as they only report either 0 or 12 months of the year, which differs from every other year in the data. Added the variable officers_killed_total which is the sum of officers_killed_by_felony and officers_killed_by_accident.Version 7 release notes:Adds data from 2018Version 6 release notes:Adds data in the following formats: SPSS and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971. This is because those variables weren't collected prior to 1971. These should be NA, not 0 but I'm keeping it as 0 to be consistent with the raw data. Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collect

  8. Fatal Police Shootings

    • kaggle.com
    • figshare.com
    Updated Jul 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan Hasz (2018). Fatal Police Shootings [Dataset]. https://www.kaggle.com/datasets/brendanhasz/fatal-police-shootings/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Brendan Hasz
    Description

    Context

    This dataset contains information about fatal shooting of civilians by police officers in the US since Jan 1st, 2015. The data about the shootings was collected by the Washington Post in their fatal police shootings dataset. The city locations were geocoded using OpenStreetMap Nominatim.

    Content

    fatal-police-shootings-data.csv contains information about each shooting. Each row is a shooting, and columns contain information about

    • Name of the individual shot
    • Date of the shooting
    • Manner of death of the individual shot
    • If and how the individual shot was armed
    • Age of the individual shot
    • Gender of the individual shot
    • Race of the individual shot
    • Whether the individual shot displayed signs of mental illness
    • To what level the individual shot was attacking when shot
    • If and how the individual shot was fleeing from police
    • If an officer present for the shooting was wearing a body camera

    CityLocations.csv contains the latitude and longitude for each city present in fatal-police-shootings-data.csv.

    Acknowledgements and Licenses

    The data in fatal-police-shootings-data.csv was collected by the Washington Post, and is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

    The data in CityLocations.csv was geocoded using OpenStreetMap Nominatim, and is licensed under the Open Database License.

    Cover image by Spenser.

  9. Fatal Police Shootings in the US (2015-2020)

    • kaggle.com
    Updated Jun 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Fatal Police Shootings in the US (2015-2020) [Dataset]. https://www.kaggle.com/datasets/andrewmvd/police-deadly-force-usage-us/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Larxel
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    About this dataset

    The Washington Post compiled a dataset of every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

    In 2015, The Post began tracking more than a dozen details about each killing by culling local news reports, law enforcement websites and social media and by monitoring independent databases such as Killed by Police and Fatal Encounters. The available features are: - Race of the deceased; - Circumstances of the shooting; - Whether the person was armed; - Whether the victim was experiencing a mental-health crisis; - Among others.

    In 2016, The Post is gathering additional information about each fatal shooting that occurs this year and is filing open-records requests with departments. More than a dozen additional details are being collected about officers in each shooting.

    The Post is documenting only those shootings in which a police officer, in the line of duty, shot and killed a civilian — the circumstances that most closely parallel the 2014 killing of Michael Brown in Ferguson, Mo., which began the protest movement culminating in Black Lives Matter and an increased focus on police accountability nationwide. The Post is not tracking deaths of people in police custody, fatal shootings by off-duty officers or non-shooting deaths.

    The FBI and the Centers for Disease Control and Prevention log fatal shootings by police, but officials acknowledge that their data is incomplete. In 2015, The Post documented more than two times more fatal shootings by police than had been recorded by the FBI. Last year, the FBI announced plans to overhaul how it tracks fatal police encounters.

    How to use this dataset

    Acknowledgements

    If you use this dataset in your research, please credit the authors.

    BibTeX

    @misc{wapo-police-shootings-bot , author = {The Washington Post}, title = {data-police-shootings}, month = jan, year = 2015, publisher = {Github}, url = {https://github.com/washingtonpost/data-police-shootings} }

    License

    CC BY NC SA 4.0

    Splash banner

    Image by pixabay avaiable on pexels.

  10. The Counted: Killed by Police, 2015-2016

    • kaggle.com
    Updated Jan 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Guardian (2017). The Counted: Killed by Police, 2015-2016 [Dataset]. https://www.kaggle.com/forums/f/2304/the-counted-killed-by-police-2015-2016
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2017
    Dataset provided by
    Kaggle
    Authors
    The Guardian
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    The Counted is a project by the Guardian – and you – working to count the number of people killed by police and other law enforcement agencies in the United States throughout 2015 and 2016, to monitor their demographics and to tell the stories of how they died.

    The database will combine Guardian reporting with verified crowdsourced information to build a more comprehensive record of such fatalities. The Counted is the most thorough public accounting for deadly use of force in the US, but it will operate as an imperfect work in progress – and will be updated by Guardian reporters and interactive journalists frequently.

    Any deaths arising directly from encounters with law enforcement will be included in the database. This will inevitably include, but will likely not be limited to, people who were shot, tasered and struck by police vehicles as well those who died in police custody. Self-inflicted deaths during encounters with law enforcement or in police custody or detention facilities will not be included.

    The US government has no comprehensive record of the number of people killed by law enforcement. This lack of basic data has been glaring amid the protests, riots and worldwide debate set in motion by the fatal police shooting of Michael Brown in August 2014. The Guardian agrees with those analysts, campaign groups, activists and authorities who argue that such accounting is a prerequisite for an informed public discussion about the use of force by police.

    Contributions of any information that may improve the quality of our data will be greatly welcomed as we work toward better accountability. Please contact us at thecounted@theguardian.com.

    CREDITS
    Research and Reporting: Jon Swaine, Oliver Laughland, Jamiles Lartey
    Design and Production: Kenan Davis, Rich Harris, Nadja Popovich, Kenton Powell

  11. NYPD Shooting Incident Data (Year To Date)

    • data.cityofnewyork.us
    • datasets.ai
    • +2more
    Updated Apr 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Police Department (NYPD) (2025). NYPD Shooting Incident Data (Year To Date) [Dataset]. https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date-/5ucz-vwe8
    Explore at:
    csv, tsv, application/rssxml, xml, application/rdfxml, application/geo+json, kmz, kmlAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    New York City Police Departmenthttps://nyc.gov/nypd
    Authors
    Police Department (NYPD)
    Description

    List of every shooting incident that occurred in NYC during the current calendar year.

    This is a breakdown of every shooting incident that occurred in NYC during the current calendar year. This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence. In addition, information related to suspect and victim demographics is also included. This data can be used by the public to explore the nature of police enforcement activity. Please refer to the attached data footnotes for additional information about this dataset.

  12. T

    PDI (Police Data Initiative) Officer Involved Shootings

    • data.cincinnati-oh.gov
    application/rdfxml +5
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cincinnati (2025). PDI (Police Data Initiative) Officer Involved Shootings [Dataset]. https://data.cincinnati-oh.gov/Safety/PDI-Police-Data-Initiative-Officer-Involved-Shooti/r6q4-muts
    Explore at:
    json, xml, application/rdfxml, csv, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    City of Cincinnati
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This information will not be updated while the Cincinnati Police Department undergoes transfer to a new data management system.

    Data Description: This data represents officer involved shooting incidents by the Cincinnati Police Department. An officer involved shooting (OIS) may be defined as the discharge of a firearm, which may include accidental and intentional discharges, by a police officer, whether on or off duty.

    Data Creation: This data is created through reporting by the Cincinnati Police Department.

    Data Created By: The source of this data is the Cincinnati Police Department.

    Refresh Frequency: This information will not be updated while the Cincinnati Police Department undergoes transfer to a new data management system.

    CincyInsights: The City of Cincinnati maintains an interactive dashboard portal, CincyInsights in addition to our Open Data in an effort to increase access and usage of city data. This data set has an associated dashboard available here: https://insights.cincinnati-oh.gov/stories/s/c64e-ybfz/

    Data Dictionary: A data dictionary providing definitions of columns and attributes is available as an attachment to this dataset.

    Processing: The City of Cincinnati is committed to providing the most granular and accurate data possible. In that pursuit the Office of Performance and Data Analytics facilitates standard processing to most raw data prior to publication. Processing includes but is not limited: address verification, geocoding, decoding attributes, and addition of administrative areas (i.e. Census, neighborhoods, police districts, etc.).

    Data Usage: For directions on downloading and using open data please visit our How-to Guide: https://data.cincinnati-oh.gov/dataset/Open-Data-How-To-Guide/gdr9-g3ad

    Disclaimer: In compliance with privacy laws, all Public Safety datasets are anonymized and appropriately redacted prior to publication on the City of Cincinnati’s Open Data Portal. This means that for all public safety datasets: (1) the last two digits of all addresses have been replaced with “XX,” and in cases where there is a single digit street address, the entire address number is replaced with "X"; and (2) Latitude and Longitude have been randomly skewed to represent values within the same block area (but not the exact location) of the incident.

  13. o

    Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and...

    • openicpsr.org
    Updated Mar 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1960-2017 [Dataset]. http://doi.org/10.3886/E102180V5
    Explore at:
    Dataset updated
    Mar 25, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2017
    Area covered
    United States
    Description

    Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971.Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. See the R code for a complete list. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data.The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which officers are killed or assaulted, describe the incidents statistically, and publish the data to aid agencies in developing policies to improve officer safety."... agencies must record assaults on sworn officers. Reporting agencies must count all assaults that resulted in serious injury or assaults in which a weapon was used that could have caused serious injury or death. They must include other assaults not causing injury if the assault involved more than mere verbal abuse or minor resistance to an arrest. In other words, agencies must include in this section all assaults on officers, whether or not the officers sustained injuries."If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com

  14. H

    Data from: DM-FS: A Comprehensive Database on Death-Modulated Fatal...

    • dataverse.harvard.edu
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Verrey (2025). DM-FS: A Comprehensive Database on Death-Modulated Fatal Shootings [Dataset]. http://doi.org/10.7910/DVN/7HK7HH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jacob Verrey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2015 - Dec 31, 2020
    Description

    DM-FS enables the bidirectional exploration of fatal encounters. In other words, it allows others to investigate how deaths in one group, officers, modulate deaths in another, fatally shot civilians and vice-versa Recommended Instructions First, click on the "Tree" button near the bold "Change View" text, underneath the "Files" tab. This will make the repository legible. Second, there are three folders listed below. Click on the folder whose contents you wish to access and download the corresponding database. Civilians. This folder contains DM-FS Civilians, a database that can enable the exploration of how a civilian’s death affects the number of officers that other civilians kill each year, and under which circumstances. Officers.This folder contains DM-FS Officers, a database that enables the exploration of how an officer’s death affects the number of civilians other officers fatally shoot each year, and under which circumstances. Technical Validation Tables. This folder contains the various technical validation tables that appear in the DM-FS data descriptor. For most users, we recommend (i) reading the codebook and (ii) downloading the cleaned version of DM-FS. For more advanced users who wish to customize the database and apply their own filtering, we recommend downloading the full database. Changelog DM-FS will be updated with additional information, such as additional years or databases. Any additions or changes to the database will appear in the text below. ************************* Version 1.1 February 4, 2025 ************************* All tables within the "Technical Validation" folder were renamed to "Repository Tables" to avoid confusion with the in-text tables within the Scientific Data Dataset Descriptor. The "Table Descriptions.txt" file was likewise renamed to "Repository Table Descriptions.txt," and the table names contained therein were updated appropriately. ************************* Version 1.0 January 16, 2025 ************************* This post represents the launch of the first full version of DM-FS. The version of DM-FS that appears below is therefore an exact copy of the one described in the Scientific Data dataset descriptor.

  15. O

    "The Counted" Database 2015-2016

    • evergreen.data.socrata.com
    application/rdfxml +5
    Updated Feb 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Guardian (2016). "The Counted" Database 2015-2016 [Dataset]. https://evergreen.data.socrata.com/Public-Safety/-The-Counted-Database-2015-2016/6udu-fhnu
    Explore at:
    application/rdfxml, application/rssxml, tsv, json, csv, xmlAvailable download formats
    Dataset updated
    Feb 29, 2016
    Dataset authored and provided by
    The Guardianhttp://theguardian.com/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The Counted is a project by the Guardian – and you – working to count the number of people killed by police and other law enforcement agencies in the United States throughout 2015 and 2016, to monitor their demographics and to tell the stories of how they died.

    The database will combine Guardian reporting with verified crowdsourced information to build a more comprehensive record of such fatalities. The Counted is the most thorough public accounting for deadly use of force in the US, but it will operate as an imperfect work in progress – and will be updated by Guardian reporters and interactive journalists as frequently and as promptly as possible.

  16. C

    Violence Reduction - Victims of Homicides and Non-Fatal Shootings

    • data.cityofchicago.org
    • catalog.data.gov
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Violence Reduction - Victims of Homicides and Non-Fatal Shootings [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victims-of-Homicides-and-Non-Fa/gumc-mgzr
    Explore at:
    csv, tsv, application/rdfxml, application/rssxml, xml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains individual-level homicide and non-fatal shooting victimizations, including homicide data from 1991 to the present, and non-fatal shooting data from 2010 to the present (2010 is the earliest available year for shooting data). This dataset includes a "GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized-access dataset, but with "UNKNOWN" in the shooting column.

    Each row represents a single victimization, i.e., a unique event when an individual became the victim of a homicide or non-fatal shooting. Each row does not represent a unique victim—if someone is victimized multiple times there will be multiple rows for each of those distinct events.

    The dataset is refreshed daily, but excludes the most recent complete day to allow the Chicago Police Department (CPD) time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    A version of this dataset with additional crime types is available by request. To make a request, please email dataportal@cityofchicago.org with the subject line: Violence Reduction Victims Access Request. Access will require an account on this site, which you may create at https://data.cityofchicago.org/signup.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset. For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

    1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
    2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

    Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

    1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

    Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.” Officer-involved shootings are not included.

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

    Note: In some instances, CPD's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most reliable crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

    Note: Homicide victims names are delayed by two weeks to allow time for the victim’s family to be notified of their passing.

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

    Note: This dataset includes variables referencing administrative or political boundaries that are subject to change. These include Street Outreach Organization boundary, Ward, Chicago Police Department District, Chicago Police Department Area, Chicago Police Department Beat, Illinois State Senate District, and Illinois State House of Representatives District. These variables reflect current geographic boundaries as of November 1st, 2021. In some instances, current boundaries may conflict with those that were in place at the time that a given incident occurred in prior years. For example, the Chicago Police Department districts 021 and 013 no longer exist. Any historical violent crime victimization that occurred in those districts when they were in existence are marked in this dataset as having occurred in the current districts that expanded to replace 013 and 021."

  17. H

    Summary Reporting System (SRS) - Law Enforcement Officers Killed and...

    • dataverse.harvard.edu
    Updated Feb 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2025). Summary Reporting System (SRS) - Law Enforcement Officers Killed and Assaulted (LEOKA) [Dataset]. http://doi.org/10.7910/DVN/AHDIWG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 9, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Dec 31, 2023
    Dataset funded by
    None
    Description

    This data serves two primary purposes: (1) to report the number of employees in each law enforcement agency, categorized by sworn officers and civilian employees, as well as by sex; and (2) to track the number of officers assaulted or killed each month. Employee counts are reported annually, providing agency-level totals without intra-year fluctuations. Assault data includes details on shift type (e.g., alone, with a partner, on foot, in a vehicle), the offender’s weapon, and the type of call (e.g., robbery, disturbance, traffic stop). Fatality data distinguishes between felonious deaths (i.e., murders) and accidental deaths.

  18. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law...

    • openicpsr.org
    • search.gesis.org
    Updated Mar 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting Program Data: Law Enforcement Officers Killed and Assaulted (LEOKA) 1960-2018 [Dataset]. http://doi.org/10.3886/E102180V7
    Explore at:
    Dataset updated
    Mar 25, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2018
    Area covered
    United States
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 7 release notes:Add data from 2018Version 6 release notes:Adds data in the following formats: SPSS and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971.Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. See the R code for a complete list. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data.The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which officers are killed or assaulted, describe the incidents statistically, and publish the data to aid agencies in developing policies to improve officer safety."... agencies must record assaults on sworn officers. Reporting agencies must count all assaults that resulted in serious injury or assaults in which a weapon was used that could have caused serious injury or death. They must include other assaults not causing injury if the assault involved more than mere verbal abuse or minor resistance to an arrest. In other words, agencies must include in this section all assaults on officers, whether or not the officers sustained injuries."

  19. Uniform Crime Reporting Program Data: Police Employee (LEOKA) Data, United...

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, delimited, r +3
    Updated Jun 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Federal Bureau of Investigation (2018). Uniform Crime Reporting Program Data: Police Employee (LEOKA) Data, United States, 2016 [Dataset]. http://doi.org/10.3886/ICPSR37062.v1
    Explore at:
    spss, ascii, sas, delimited, stata, rAvailable download formats
    Dataset updated
    Jun 29, 2018
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Federal Bureau of Investigation
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/37062/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37062/terms

    Time period covered
    2016
    Area covered
    United States
    Description

    The Uniform Crime Reporting Program Data, Police Employee Data, 2016 file contains monthly data on felonious or accidental killings and assaults upon United States law enforcement officers acting in the line of duty. The Federal Bureau of Investigation (FBI) assembled the data and processed them from UCR Master Police Employee (LEOKA) data tapes. Each agency record in the file includes the following summary variables: state code, population group code, geographic division, Metropolitan Statistical Area code, and agency name. These variables afford considerable flexibility in creating subsets or aggregations of the data. Since 1930, the Federal Bureau of Investigation has compiled the Uniform Crime Reports (UCR) to serve as a periodic nationwide assessment of reported crimes not available elsewhere in the criminal justice system. Each year, this information is reported in four types of files: (1) Offenses Known and Clearances by Arrest, (2) Property Stolen and Recovered, (3) Supplementary Homicide Reports (SHR), and (4) Police Employee (LEOKA) Data. The Police Employee (LEOKA) Data provide information about law enforcement officers killed or assaulted (hence the acronym, LEOKA) in the line of duty. The variables created from the LEOKA forms provide in-depth information on the circumstances surrounding killings or assaults, including type of call answered, type of weapon used, and type of patrol the officers were on.

  20. Chicago Crime

    • kaggle.com
    zip
    Updated Apr 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2018). Chicago Crime [Dataset]. https://www.kaggle.com/chicago/chicago-crime
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 17, 2018
    Dataset authored and provided by
    City of Chicago
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Chicago
    Description

    Context

    Approximately 10 people are shot on an average day in Chicago.

    http://www.chicagotribune.com/news/data/ct-shooting-victims-map-charts-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-chicago-homicides-data-tracker-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-homicide-victims-2017-htmlstory.html

    Content

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. This data includes unverified reports supplied to the Police Department. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time.

    Update Frequency: Daily

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:chicago_crime

    https://cloud.google.com/bigquery/public-data/chicago-crime-data

    Dataset Source: City of Chicago

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source —https://data.cityofchicago.org — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Ferdinand Stohr from Unplash.

    Inspiration

    What categories of crime exhibited the greatest year-over-year increase between 2015 and 2016?

    Which month generally has the greatest number of motor vehicle thefts?

    How does temperature affect the incident rate of violent crime (assault or battery)?

    https://cloud.google.com/bigquery/images/chicago-scatter.png" alt=""> https://cloud.google.com/bigquery/images/chicago-scatter.png

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institute of Justice (2025). Felonious Homicides of American Police Officers, 1977-1992 [Dataset]. https://catalog.data.gov/dataset/felonious-homicides-of-american-police-officers-1977-1992-25657
Organization logo

Data from: Felonious Homicides of American Police Officers, 1977-1992

Related Article
Explore at:
Dataset updated
Mar 12, 2025
Dataset provided by
National Institute of Justicehttp://nij.ojp.gov/
Description

The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.

Search
Clear search
Close search
Google apps
Main menu