94 datasets found
  1. o

    Amazon Products

    • opendatabay.com
    .undefined
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Retail & Consumer Behavior
    Description

    Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

    Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

    Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

    Dataset Features

    • Title: The name or title of the product.
    • seller_name: The name of the seller offering the product.
    • Brand: The brand associated with the product.
    • Description: A detailed description of the product, including key features.
    • initial_price: The original price of the product before any discounts.
    • final_price: The current price of the product after discounts.
    • Currency: The currency in which the product is priced (e.g., GBP, USD).
    • Availability: The stock status (e.g., in stock, out of stock).
    • reviews_count: The total number of customer reviews.
    • Categories: The specific category the product belongs to.
    • asin: Amazon Standard Identification Number.
    • buybox_seller: The seller currently winning the Amazon Buy Box.
    • number_of_sellers: The number of sellers offering this product.
    • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
    • answered_questions: The number of questions answered in the product Q&A section.
    • domain: The website domain where the product is being sold.
    • images_count: The number of images available for the product.
    • URL: The link to the product page on Amazon.
    • video_count: The number of videos available for the product.
    • image_url: The URL of the primary image associated with the product.
    • item_weight: The weight of the product.
    • Rating: The average rating of the product based on customer reviews.
    • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
    • seller_id: The unique identifier for the seller.
    • date_first_available: The date when the product was first made available on Amazon.
    • discount: Any discount applied to the product.
    • model_number: The model number of the product.
    • manufacturer: The company that manufactures the product.
    • department: The department under which the product is categorized (e.g., Health & Household).
    • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
    • upc: The Universal Product Code (UPC) associated with the product.
    • video: URL(s) of any video content associated with the product.
    • top_review: A summary or excerpt from the top customer review.
    • variations: Different product variations (e.g., different sizes or flavors).
    • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
    • features: Key features or highlights of the product.
    • format: The format of the product (e.g., powder, liquid).
    • buybox_prices: Pricing details for the product, including the base and tiered prices.
    • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
    • input_asin: The ASIN of the product as input for Amazon searches.
    • ingredients: List of ingredients in the product (if applicable).
    • origin_url: The source URL for product-related information or ingredients.
    • bought_past_month: A flag indicating if the product was bought in the past month.
    • is_available: Availability status of the product (True/False).
    • root_bs_category: The broad product category (e.g., Health & Household).
    • bs_category: The specific subcategory the product belongs to.
    • bs_rank: The rank of the product in its specific subcategory.
    • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
    • subcategory_rank: The rank of the product within its subcategory.
    • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
    • images: A list of URLs for additional product images.
    • product_details: Detailed product specifications and features.
    • prices_breakdown: A breakdown of the price, including any discounts or promotions.
    • country_of_origin: The country where the product is made.
    • from_the_brand: Information from the brand or manufact
  2. Amazon global net sales value 2021-2026, by category

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon global net sales value 2021-2026, by category [Dataset]. https://www.statista.com/statistics/1264169/amazon-sales-value-product-category/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2021
    Area covered
    Worldwide
    Description

    According to forecasts, net sales of electrical products on Amazon are forecast at over *** billion U.S. dollars. With a compound annual growth rate of **** percent, this figure is expected to exceed *** billion dollars by 2026. Yet, the category expected to grow the strongest on the e-commerce platform is health and beauty.

  3. Amazon Products Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Apr 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Products Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/product
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Buy Amazon datasets and get access to over 300 million records from any Amazon domain. Get insights on Amazon products, sellers, and reviews.

  4. AmazonSalesReport

    • kaggle.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpit Mishra (2024). AmazonSalesReport [Dataset]. https://www.kaggle.com/datasets/arpit2712/amazonsalesreport
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arpit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Amazon Sales Report

    Overview:

    This dataset provides detailed sales data from Amazon, offering a comprehensive look at various product categories and their performance over time. It includes information on sales figures, order details, product categories, and customer demographics.

    Features:

    1. Order ID

    Description: A unique identifier for each order placed on Amazon. This field helps to track individual orders and link related records.

    2. Dates

    Description: The date when the order was placed. This field is crucial for analyzing sales trends over time and identifying seasonal patterns.

    3. Status

    Description: The current status of the order (e.g., Shipped, Delivered, Pending). This field provides insight into the order fulfillment process and helps monitor order processing efficiency.

    4. Fulfillment

    Description: Indicates the method used to fulfill the order (e.g., Fulfilled by Amazon, Fulfilled by Seller). This feature helps in analyzing the performance of different fulfillment methods and their impact on customer satisfaction.

    5. Sales Channel

    Description: The channel through which the sale was made (e.g., Amazon Website, Mobile App). This field is useful for evaluating the effectiveness of different sales channels and understanding customer preferences.

    6. Category

    Description: The product category to which the purchased item belongs (e.g., Electronics, Clothing, Home Goods). This feature aids in analyzing sales performance across various product categories.

    7. Ship Service Level

    Description: The shipping service level selected for the order (e.g., Standard Shipping, Two-Day Shipping). This field helps to assess the impact of shipping options on delivery times and customer satisfaction.

    8. Size

    Description: The size of the product ordered (e.g., Small, Medium, Large). This feature is relevant for analyzing sales performance based on product size and understanding inventory requirements.

    9. Carrier Status

    Description: The status of the shipment with the carrier (e.g., In Transit, Delivered, Returned). This field provides insights into the shipping process and helps in monitoring delivery performance and handling returns.

    Use Cases:

    Sales Analysis:

    Examine trends in sales over time, identify peak periods, and analyze performance by product category.

    Customer Insights:

    Explore customer demographics to understand purchasing behavior and preferences.

    Inventory Management:

    Assess which products are performing well and which are not, aiding in inventory and supply chain management.

    Marketing Strategies:

    Develop targeted marketing campaigns based on sales trends and customer profiles.

    Data Source:

    This dataset is a simulated collection of Amazon sales data and is intended for educational and analytical purposes.

    Acknowledgments:

    This dataset was created to facilitate data analysis and machine learning projects. It is ideal for practicing data manipulation, statistical analysis, and predictive modeling.

  5. d

    Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP,...

    • datarade.ai
    .csv, .xls
    Updated Feb 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP, UK, Italy, CA | List of Amazon Sellers | 200K+ Amazon Seller Leads| [Dataset]. https://datarade.ai/data-products/amazon-seller-directory-amazon-fba-seller-database-with-sto-lead-for-business
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 21, 2022
    Dataset authored and provided by
    Lead for Business
    Area covered
    Germany, United States, United Kingdom, Italy
    Description

    • 500K+ Active Amazon Stores • 200K+ Seller Leads • Platforms USA, Germany, UK, Italy, France, Spain, CA • C-Suite/Marketing/Sales Contacts • FBA/Non-FBA Sellers • 15+ data points available for each prospect • Filter your leads by store size, niche, location, and many more • 100% manually researched and verified.

    For over a decade, we have been manually collecting Amazon seller data from various data sources such as Amazon, Linkedin, Google, and others. We are specialized to get valid, and potential data so you may conduct ads and begin selling without hesitation.

    We designed our data packages for all types of organizations, thus they are reasonably priced. We are always trying to reduce our prices to better suit all of your requirements.

    So, if you’re looking to reach out to your targeted Amazon sellers, now is the greatest time to do so and offer your goods, services, and promotions. You can get your targeted Amazon Sellers List with seller contact information.

    Alternatively, if you provide Amazon Seller Names or IDs, we will conduct Custom Research and deliver the customized list to you.

    Data Points Available:

    Full Name Linkedin URL Direct Email Generic Phone Number Business Name and Address Company Website Seller IDs and URLs Revenue Seller Review Count Niche FBA/Non-FBA Country and More

  6. Global net revenue of Amazon 2014-2024, by product group

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global net revenue of Amazon 2014-2024, by product group [Dataset]. https://www.statista.com/statistics/672747/amazons-consolidated-net-revenue-by-segment/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, Amazon's net revenue from subscription services segment amounted to 44.37 billion U.S. dollars. Subscription services include Amazon Prime, for which Amazon reported 200 million paying members worldwide at the end of 2020. The AWS category generated 107.56 billion U.S. dollars in annual sales. During the most recently reported fiscal year, the company’s net revenue amounted to 638 billion U.S. dollars. Amazon revenue segments Amazon is one of the biggest online companies worldwide. In 2019, the company’s revenue increased by 21 percent, compared to Google’s revenue growth during the same fiscal period, which was just 18 percent. The majority of Amazon’s net sales are generated through its North American business segment, which accounted for 236.3 billion U.S. dollars in 2020. The United States are the company’s leading market, followed by Germany and the United Kingdom. Business segment: Amazon Web Services Amazon Web Services, commonly referred to as AWS, is one of the strongest-growing business segments of Amazon. AWS is a cloud computing service that provides individuals, companies and governments with a wide range of computing, networking, storage, database, analytics and application services, among many others. As of the third quarter of 2020, AWS accounted for approximately 32 percent of the global cloud infrastructure services vendor market.

  7. c

    Amazon India products dataset in CSV format

    • crawlfeeds.com
    csv, zip
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Amazon India products dataset in CSV format [Dataset]. https://crawlfeeds.com/datasets/amazon-india-products-dataset-in-csv-format
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Area covered
    India
    Description

    Gain access to a structured dataset featuring thousands of products listed on Amazon India. This dataset is ideal for e-commerce analytics, competitor research, pricing strategies, and market trend analysis.

    Dataset Features:

    • Product Details: Name, Brand, Category, and Unique ID

    • Pricing Information: Current Price, Discounted Price, and Currency

    • Availability & Ratings: Stock Status, Customer Ratings, and Reviews

    • Seller Information: Seller Name and Fulfillment Details

    • Additional Attributes: Product Description, Specifications, and Images

    Dataset Specifications:

    • Format: CSV

    • Number of Records: 50,000+

    • Delivery Time: 3 Days

    • Price: $149.00

    • Availability: Immediate

    This dataset provides structured and actionable insights to support e-commerce businesses, pricing strategies, and product optimization. If you're looking for more datasets for e-commerce analysis, explore our E-commerce datasets for a broader selection.

  8. d

    DATAANT | Amazon Data | Dataset, API | Product by keyword, by category, by...

    • datarade.ai
    Updated Feb 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataant (2021). DATAANT | Amazon Data | Dataset, API | Product by keyword, by category, by seller | 19 countries | 20+ Attributes [Dataset]. https://datarade.ai/data-products/amazon-product-data-by-keyword-by-category-by-seller-19-dataant
    Explore at:
    .json, .xml, .csv, .xls, .sqlAvailable download formats
    Dataset updated
    Feb 15, 2021
    Dataset authored and provided by
    Dataant
    Area covered
    United States
    Description

    Get the needed Amazon product data right from the data extractor! Collect Amazon data product information from 19 Amazon countries from the following domains: - amazon.com - amazon.com.au - amazon.com.br - amazon.ca - amazon.cn - amazon.fr - amazon.de - amazon.in - amazon.it - amazon.com.mx - amazon.nl - amazon.sg - amazon.es - amazon.com.tr

    Request Ecommerce Product Data dataset by: - keyword - category - seller

    Amazon E-commerce Data datasets gathered by keyword and category contain: - product page position in search - product position on the page - product global position

    Data attributes contain: - ASIN - URL - Price (current price and discount information) - Reviews (total reviews and total rating). - Reviews information: each product can be enriched with the sub-dataset with reviews - Title - Description - Audio and Video And dozens of additional information.

    Amazon extraction results can be delivered by schedule or API request, so the data can be extracted in real-time.

    DATAANT uses the in-house web scraping service with no concurrency limitations, so unlimited data extractions can be performed simultaneously.

    Output can and attributes can be customized to fit your particular needs.

  9. Amazon revenue 2004-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon revenue 2004-2024 [Dataset]. https://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide, United States
    Description

    From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.

  10. Amazon Product Reviews

    • kaggle.com
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Amazon Product Reviews [Dataset]. https://www.kaggle.com/datasets/thedevastator/amazon-product-reviews/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon Product Reviews

    18 Years of Customer Ratings and Experiences

    By Huggingface Hub [source]

    About this dataset

    The Amazon Reviews Polarity Dataset discloses eighteen years of customers' ratings and reviews from Amazon.com, offering an unparalleled trove of insight and knowledge. Drawing from the immense pool of over 35 million customer reviews, this dataset presents a broad spectrum of customer opinions on products they have bought or used. This invaluable data is a gold mine for improving products and services as it contains comprehensive information regarding customers' experiences with a product including ratings, titles, and plaintext content. At the same time, this dataset contains both customer-specific data along with product information which encourages deep analytics that could lead to great advances in providing tailored solutions for customers. Has your product been favored by the majority? Are there any aspects that need extra care? Use Amazon Reviews Polarity to gain deeper insights into what your customers want - explore now!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Analyze customer ratings to identify trends: Take a look at how many customers have rated the same product or service with the same score (e.g., 4 stars). You can use this information to identify what customers like or don’t like about it by examining common sentiment throughout the reviews. Identifying these patterns can help you make decisions on which features of your products or services to emphasize in order to boost sales and satisfaction rates.

    2 Review content analysis: Analyzing review content is one of the best ways to gauge customer sentiment toward specific features or aspects of a product/service. Using natural language processing tools such as Word2Vec, Latent Dirichlet Allocation (LDA), or even simple keyword search algorithms can quickly reveal general topics that are discussed in relation to your product/service across multiple reviews - allowing you quickly pinpoint areas that may need improvement for particular items within your lines of business.

    3 Track associated scores over time: By tracking customer ratings overtime, you may be able to better understand when there has been an issue with something specific related to your product/service - such as negative response toward a feature that was introduced but didn’t seem popular among customers and was removed shortly after introduction.. This can save time and money by identifying issues before they become widespread concerns with larger sets of consumers who invest their money in using your company's item(s).

    4 Visualize sentiment data over time graphs : Utilizing visualizations such as bar graphs can help identify trends across different categories quicker than raw numbers alone; combining both numeric values along with color differences associated between different scores allows you spot anomalies easier - allowing faster resolution times when trying figure out why certain spikes occurred where other stayed stable (or vice-versa) when comparing similar data points through time-series based visualization models

    Research Ideas

    • Developing a customer sentiment analysis system that can be used to quickly analyze the sentiment of reviews and identify any potential areas of improvement.
    • Building a product recommendation service that takes into account the ratings and reviews of customers when recommending similar products they may be interested in purchasing.
    • Training a machine learning model to accurately predict customers’ ratings on new products they have not yet tried and leverage this for further product development optimization initiatives

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: train.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------| | label | The sentiment of the review, either positive or negative. (String) | | title | The title of the review. (String) ...

  11. Amazon best seller softwares

    • kaggle.com
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kaverappa c k (2025). Amazon best seller softwares [Dataset]. https://www.kaggle.com/datasets/kaverappa/amazon-best-seller-softwares/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    kaverappa c k
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    **# 📌 Dataset Description for Kaggle: Amazon Best Sellers Data

    **📖 Overview

    This dataset contains real-time Amazon Best Sellers data across multiple countries and categories, specifically focusing on Software products. The data is collected via an API and includes details such as product titles, prices, star ratings, number of reviews, and rank changes.

    With this dataset, you can analyze trending products, pricing strategies, and customer preferences across different regions. It is useful for market analysis, competitor research, and e-commerce insights.

    📊 Dataset Contents

    Each row in this dataset represents a top-selling software product on Amazon for a specific country. The dataset includes the following columns:

    product_title 🏷️ – Name of the product product_price 💰 – Price of the product in the respective country’s currency product_star_rating ⭐ – Average star rating of the product product_num_ratings 📝 – Total number of customer reviews rank 🔢 – Current ranking of the product in the Best Sellers list country 🌍 – The country where the ranking is recorded

    🎯 Potential Use Cases

    ✅ E-commerce Market Analysis – Identify top-selling software products in different regions. ✅ Pricing Strategy Optimization – Compare prices across markets and track fluctuations. ✅ Customer Sentiment Analysis – Analyze customer ratings and review trends. ✅ Competitor Research – Understand how products rank in different countries. ✅ Trend Forecasting – Observe rank changes and predict upcoming best-sellers.

  12. u

    Amazon review data 2018

    • cseweb.ucsd.edu
    • nijianmo.github.io
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
    Explore at:
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  13. c

    Amazon Beauty Products Dataset with Ingredients (47K Records)

    • crawlfeeds.com
    csv, zip
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Amazon Beauty Products Dataset with Ingredients (47K Records) [Dataset]. https://crawlfeeds.com/datasets/amazon-beauty-products-dataset-with-ingredients-47k-records
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Gain insights into Amazon’s beauty and personal care market with this comprehensive Amazon Beauty Products Dataset. Covering 47,000 records across skincare, haircare, and makeup, this dataset provides full ingredient lists, product descriptions, pricing, and availability. Ideal for researchers and businesses focused on ingredient transparency, beauty trend analysis, and competitive market insights. Perfect for applications in ingredient research, product development, and e-commerce analysis.

    Access a rich Amazon Beauty & Cosmetics dataset with over 200,000+ product records, including detailed ingredients.
    Explore more on our Beauty & Cosmetics Data page or view the full Amazon Beauty Dataset

    Walmart product dataset featuring detailed ingredient information across categories like beauty, food, personal care, and more.
    View Dataset →

    The dataset includes the following fields:

    • ASIN: Unique Amazon product identifier.
    • Product Name and Description: Full titles and descriptions of each product.
    • Price and Availability: Current pricing and stock status.
    • Categories: Product type classification (e.g., skincare, haircare, makeup).
    • Ingredients: Complete ingredient lists, ensuring transparency about product composition.
    • Images: High-quality product images.
    • Brand and Manufacturer Information: Details of the brand and manufacturer.
    • Customer Ratings and Reviews: User-generated content for understanding product popularity and performance.

    This dataset is invaluable for:

    • Ingredient Analysis: Understanding popular ingredients in beauty products.
    • Market Research: Analyzing trends in beauty products, such as ingredient types and product categories.
    • Competitive Analysis: Assessing product offerings by brand, price, and ingredients.

    Whether you’re focused on skincare, haircare, makeup, or other beauty categories, this dataset provides in-depth information for deep analysis. For any custom requirements or additional data needs, please feel free to reach out.

  14. Amazon Prime Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Prime Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/prime
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock powerful insights with the Amazon Prime dataset, offering access to millions of records from any Amazon domain. This dataset provides comprehensive data points such as product titles, descriptions, exclusive Prime discounts, brand details, pricing (initial and discounted), availability, customer ratings, reviews, and product categories. Additionally, it includes unique identifiers like ASINs, images, and seller information, allowing you to analyze Prime offerings, trends, and customer preferences with precision. Use this dataset to optimize your eCommerce strategies by analyzing Prime-exclusive pricing strategies, identifying top-performing brands and products, and tracking customer sentiment through reviews and ratings. Gain valuable insights into consumer demand, seasonal trends, and the impact of Prime discounts to make data-driven decisions that enhance your inventory management, marketing campaigns, and pricing strategies. Whether you’re a retailer, marketer, data analyst, or researcher, the Amazon Prime dataset empowers you with the data needed to stay competitive in the dynamic eCommerce landscape. Available in various formats such as JSON, CSV, and Parquet, and delivered via flexible options like API, S3, or email, this dataset ensures seamless integration into your workflows.

  15. h

    amazon_us_reviews

    • huggingface.co
    • tensorflow.org
    Updated Jun 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polina Kazakova (2023). amazon_us_reviews [Dataset]. https://huggingface.co/datasets/polinaeterna/amazon_us_reviews
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Polina Kazakova
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.

    Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).

    Each Dataset contains the following columns:

    • marketplace: 2 letter country code of the marketplace where the review was written.
    • customer_id: Random identifier that can be used to aggregate reviews written by a single author.
    • review_id: The unique ID of the review.
    • product_id: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.
    • product_parent: Random identifier that can be used to aggregate reviews for the same product.
    • product_title: Title of the product.
    • product_category: Broad product category that can be used to group reviews (also used to group the dataset into coherent parts).
    • star_rating: The 1-5 star rating of the review.
    • helpful_votes: Number of helpful votes.
    • total_votes: Number of total votes the review received.
    • vine: Review was written as part of the Vine program.
    • verified_purchase: The review is on a verified purchase.
    • review_headline: The title of the review.
    • review_body: The review text.
    • review_date: The date the review was written.
  16. Amazon Product Data, Reviews, Offers, Best Sellers, Deals, Sellers,...

    • openwebninja.com
    json
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Amazon Product Data, Reviews, Offers, Best Sellers, Deals, Sellers, Influencers, and More [Dataset]. https://www.openwebninja.com/api/real-time-amazon-data
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    All 22 Amazon Domains
    Description

    This dataset provides comprehensive real-time data from Amazon's global marketplaces. It includes detailed product information, reviews, seller profiles, best sellers, deals, influencers, and more across all Amazon domains worldwide. The data covers product attributes like pricing, availability, specifications, reviews and ratings, as well as seller information including profiles, contact details, and performance metrics. Users can leverage this dataset for price monitoring, competitive analysis, market research, and building e-commerce applications. The API enables real-time access to Amazon's vast product catalog and marketplace data, helping businesses make data-driven decisions about pricing, inventory, and market positioning. Whether you're conducting market analysis, tracking competitors, or building e-commerce tools, this dataset provides current and reliable Amazon marketplace data. The dataset is delivered in a JSON format via REST API.

  17. d

    Ecommerce Data - Product data, Seller data, Market data, Pricing data|...

    • datarade.ai
    Updated Dec 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2023). Ecommerce Data - Product data, Seller data, Market data, Pricing data| Scrape all publicly available eCommerce data| 50% Cost Saving | Free Sample [Dataset]. https://datarade.ai/data-products/apiscrapy-mobile-app-data-api-scraping-service-app-intel-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Dec 1, 2023
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Isle of Man, Switzerland, Malta, Bosnia and Herzegovina, United States of America, China, Åland Islands, Spain, Ukraine, Norway
    Description

    Note:- Only publicly available data can be worked upon

    In today's ever-evolving Ecommerce landscape, success hinges on the ability to harness the power of data. APISCRAPY is your strategic ally, dedicated to providing a comprehensive solution for extracting critical Ecommerce data, including Ecommerce market data, Ecommerce product data, and Ecommerce datasets. With the Ecommerce arena being more competitive than ever, having a data-driven approach is no longer a luxury but a necessity.

    APISCRAPY's forte lies in its ability to unearth valuable Ecommerce market data. We recognize that understanding the market dynamics, trends, and fluctuations is essential for making informed decisions.

    APISCRAPY's AI-driven ecommerce data scraping service presents several advantages for individuals and businesses seeking comprehensive insights into the ecommerce market. Here are key benefits associated with their advanced data extraction technology:

    1. Ecommerce Product Data: APISCRAPY's AI-driven approach ensures the extraction of detailed Ecommerce Product Data, including product specifications, images, and pricing information. This comprehensive data is valuable for market analysis and strategic decision-making.

    2. Data Customization: APISCRAPY enables users to customize the data extraction process, ensuring that the extracted ecommerce data aligns precisely with their informational needs. This customization option adds versatility to the service.

    3. Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can obtain relevant ecommerce data swiftly and consistently.

    4. Realtime Insights: Businesses can gain real-time insights into the dynamic Ecommerce Market by accessing rapidly extracted data. This real-time information is crucial for staying ahead of market trends and making timely adjustments to business strategies.

    5. Scalability: The technology behind APISCRAPY allows scalable extraction of ecommerce data from various sources, accommodating evolving data needs and handling increased volumes effortlessly.

    Beyond the broader market, a deeper dive into specific products can provide invaluable insights. APISCRAPY excels in collecting Ecommerce product data, enabling businesses to analyze product performance, pricing strategies, and customer reviews.

    To navigate the complexities of the Ecommerce world, you need access to robust datasets. APISCRAPY's commitment to providing comprehensive Ecommerce datasets ensures businesses have the raw materials required for effective decision-making.

    Our primary focus is on Amazon data, offering businesses a wealth of information to optimize their Amazon presence. By doing so, we empower our clients to refine their strategies, enhance their products, and make data-backed decisions.

    [Tags: Ecommerce data, Ecommerce Data Sample, Ecommerce Product Data, Ecommerce Datasets, Ecommerce market data, Ecommerce Market Datasets, Ecommerce Sales data, Ecommerce Data API, Amazon Ecommerce API, Ecommerce scraper, Ecommerce Web Scraping, Ecommerce Data Extraction, Ecommerce Crawler, Ecommerce data scraping, Amazon Data, Ecommerce web data]

  18. h

    Amazon_Sports_and_Outdoors_2023

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SmartCat, Amazon_Sports_and_Outdoors_2023 [Dataset]. https://huggingface.co/datasets/smartcat/Amazon_Sports_and_Outdoors_2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset authored and provided by
    SmartCat
    Description

    Dataset Card for Dataset Name

    Original dataset can be found on: https://amazon-reviews-2023.github.io/

      Dataset Details
    

    This dataset is downloaded from the link above, the category Sports and Outdoors meta dataset.

      Dataset Description
    

    This dataset is a refined version of the Amazon Sports and Outdoors 2023 meta dataset, which originally contained product metadata for sports and outdoors products that are sold on Amazon. The dataset includes detailed information… See the full description on the dataset page: https://huggingface.co/datasets/smartcat/Amazon_Sports_and_Outdoors_2023.

  19. Amazon 10+Year Stock Data [Latest][1997-2020]

    • kaggle.com
    Updated Aug 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aayush Mishra (2020). Amazon 10+Year Stock Data [Latest][1997-2020] [Dataset]. https://www.kaggle.com/aayushmishra1512/amazon-10year-stock-data-latest/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aayush Mishra
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Amazon has become a house hold name now and has been around for quite sometime. It comes under the popular FAANG companies and a dream company for many. Today almost anything that you need today is available on Amazon. From groceries to electronics. But it has not only benefited the people purchasing from them. It has benefited those too who invested in the company back then and continue to do till today.

    Content

    This data set has 7 columns with all the necessary values such as opening price of the stock, the closing price of it, its highest in the day and much more. It has date wise data of the stock starting from 1997 to 2020(August).

  20. Consumer Reviews of Amazon Products

    • kaggle.com
    zip
    Updated May 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datafiniti (2019). Consumer Reviews of Amazon Products [Dataset]. https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products
    Explore at:
    zip(17049423 bytes)Available download formats
    Dataset updated
    May 20, 2019
    Dataset authored and provided by
    Datafiniti
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    About This Data

    This is a list of over 34,000 consumer reviews for Amazon products like the Kindle, Fire TV Stick, and more provided by Datafiniti's Product Database. The dataset includes basic product information, rating, review text, and more for each product.

    Note that this is a sample of a large dataset. The full dataset is available through Datafiniti.

    What You Can Do With This Data

    You can use this data to analyze Amazon’s most successful consumer electronics product launches; discover insights into consumer reviews and assist with machine learning models. E.g.:

    • What are the most reviewed Amazon products?
    • What are the initial and current number of customer reviews for each product?
    • How do the reviews in the first 90 days after a product launch compare to the price of the product?
    • How do the reviews in the first 90 days after a product launch compare to the days available for sale?
    • Map the keywords in the review text against the review ratings to help train sentiment models.

    Data Schema

    A full schema for the data is available in our support documentation.

    About Datafiniti

    Datafiniti provides instant access to web data. We compile data from thousands of websites to create standardized databases of business, product, and property information. Learn more.

    Interested in the Full Dataset?

    You can access the full dataset by running the following query with Datafiniti’s Product API.

    { "query": "dateUpdated:[2017-09-01 TO *] AND brand:Amazon* AND categories:* AND primaryCategories:* AND name:* AND reviews:*", "format": "csv", "download": true }

    **The total number of results may vary.*

    Get this data and more by creating a free Datafiniti account or requesting a demo.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a

Amazon Products

Explore at:
.undefinedAvailable download formats
Dataset updated
Jun 19, 2025
Dataset authored and provided by
Bright Data
Area covered
Retail & Consumer Behavior
Description

Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

Dataset Features

  • Title: The name or title of the product.
  • seller_name: The name of the seller offering the product.
  • Brand: The brand associated with the product.
  • Description: A detailed description of the product, including key features.
  • initial_price: The original price of the product before any discounts.
  • final_price: The current price of the product after discounts.
  • Currency: The currency in which the product is priced (e.g., GBP, USD).
  • Availability: The stock status (e.g., in stock, out of stock).
  • reviews_count: The total number of customer reviews.
  • Categories: The specific category the product belongs to.
  • asin: Amazon Standard Identification Number.
  • buybox_seller: The seller currently winning the Amazon Buy Box.
  • number_of_sellers: The number of sellers offering this product.
  • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
  • answered_questions: The number of questions answered in the product Q&A section.
  • domain: The website domain where the product is being sold.
  • images_count: The number of images available for the product.
  • URL: The link to the product page on Amazon.
  • video_count: The number of videos available for the product.
  • image_url: The URL of the primary image associated with the product.
  • item_weight: The weight of the product.
  • Rating: The average rating of the product based on customer reviews.
  • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
  • seller_id: The unique identifier for the seller.
  • date_first_available: The date when the product was first made available on Amazon.
  • discount: Any discount applied to the product.
  • model_number: The model number of the product.
  • manufacturer: The company that manufactures the product.
  • department: The department under which the product is categorized (e.g., Health & Household).
  • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
  • upc: The Universal Product Code (UPC) associated with the product.
  • video: URL(s) of any video content associated with the product.
  • top_review: A summary or excerpt from the top customer review.
  • variations: Different product variations (e.g., different sizes or flavors).
  • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
  • features: Key features or highlights of the product.
  • format: The format of the product (e.g., powder, liquid).
  • buybox_prices: Pricing details for the product, including the base and tiered prices.
  • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
  • input_asin: The ASIN of the product as input for Amazon searches.
  • ingredients: List of ingredients in the product (if applicable).
  • origin_url: The source URL for product-related information or ingredients.
  • bought_past_month: A flag indicating if the product was bought in the past month.
  • is_available: Availability status of the product (True/False).
  • root_bs_category: The broad product category (e.g., Health & Household).
  • bs_category: The specific subcategory the product belongs to.
  • bs_rank: The rank of the product in its specific subcategory.
  • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
  • subcategory_rank: The rank of the product within its subcategory.
  • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
  • images: A list of URLs for additional product images.
  • product_details: Detailed product specifications and features.
  • prices_breakdown: A breakdown of the price, including any discounts or promotions.
  • country_of_origin: The country where the product is made.
  • from_the_brand: Information from the brand or manufact
Search
Clear search
Close search
Google apps
Main menu