80 datasets found
  1. United States US: No of Listed Domestic Companies: Total

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  2. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jun 27, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6159 points on June 27, 2025, gaining 0.30% from the previous session. Over the past month, the index has climbed 4.60% and is up 12.80% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.

  3. d

    BrightQuery (BQ) Public Companies Dataset (4000 US companies covered)

    • datarade.ai
    Updated Apr 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Query (2021). BrightQuery (BQ) Public Companies Dataset (4000 US companies covered) [Dataset]. https://datarade.ai/data-products/brightquery-bq-public-companies-dataset-bright-query
    Explore at:
    Dataset updated
    Apr 22, 2021
    Dataset authored and provided by
    Bright Query
    Area covered
    United States
    Description

    Dataset containing over 5000 data metrics (including raw data and BQ calculated scores & metrics) for over 4000 public companies (~95% of the Russell 3000). Includes financials (from SEC filings) as well as data that is not reported to the SEC, including monthly headcount, detailed employee benefits data, credit events related to contributions to benefits plans. Also includes BQ scores, industry and macro statistics that provide a comprehensive view of the sector & industry.

    BQ's Public Companies dataset is applicable to both quantitative investment managers as well as fundamentals public equity investors, who wish to use alternative (non-financial) data to enhance their investment analysis and investment decisions.

  4. d

    PREDIK Data-Driven I Private Company Data I Enhanced Custom Dataset to...

    • datarade.ai
    .json, .csv
    Updated Feb 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Predik Data-driven (2021). PREDIK Data-Driven I Private Company Data I Enhanced Custom Dataset to Understand Private & Public Business Relations between US Companies [Dataset]. https://datarade.ai/data-products/company-to-company-relations-data-predik-data-driven
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Feb 16, 2021
    Dataset authored and provided by
    Predik Data-driven
    Area covered
    United States
    Description

    This private company dataset provides an in-depth view of any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental US.

    Also, using robust supply chain data you will be able to map US facilities (including factories, warehouses, and retail outlets).

    With this private company dataset, it is possible to track the movement of trucks and devices between locations to identify supply chain connections and company data insights.

    Our Machine learning algorithms ingest 7-15bn daily events to estimate the volume of goods transported between locations. Consequently, we can map supply chain connections between:

    •Different companies (expressed as a percentage of volume transported).

    •Locations owned by the same company (e.g. warehouse to shop).

    With this novel geolocation approach, it is possible to "draw" a knowledge graph of any private or public company´s relations with other companies within the country.

    This solution, in the form of a dataset, provides an in-depth view of any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental United States.

    Use cases:

    • Identification and understanding of relations company-to-company: It helps to identify and infer relationships and connections between specific companies or facilities and between sectors/industries.

    • Identification and understanding of relations place-to-place: A logistics and domestic distribution supply chain can be mapped, both nationwide and state-wide in the US, and across countries in Europe.

    • Visualization and mapping of an entire supply chain network.

    • Tracking of products in any distribution or supply chain.

    • Risk assessment

    • Correlation analysis.

    • Disruption analysis.

    • Analysis of illicit networks and tracking of illegal use of corporate assets.

    • Improvement of casualty risk management.

    • Optimization of supply chain risk management.

    • Security and compliance.

    • Identification of not only the first tier of suppliers in the value chain, but also 2nd and 3rd tier suppliers, and more.

    Current largest use case: global corporation using it to model risk at a facility level (+100,000 locations).

    Why should you trust PREDIK Data-Driven? In 2023, we were listed as Datarade's top providers. Why? Our solutions for private company data, supply chain data, and B2B data adapt according to the specific needs of companies. Also, PREDIK methodology focuses on the client and the necessary elements for the success of their projects.

  5. United States US: Market Capitalization: Listed Domestic Companies

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Market Capitalization: Listed Domestic Companies [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-market-capitalization-listed-domestic-companies
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Market Capitalization: Listed Domestic Companies data was reported at 32,120.703 USD bn in 2017. This records an increase from the previous number of 27,352.201 USD bn for 2016. United States US: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 11,322.354 USD bn from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 32,120.703 USD bn in 2017 and a record low of 1,263.561 USD bn in 1981. United States US: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  6. United States US: Stocks Traded: Total Value

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  7. Company Financial Data | Private & Public Companies | Verified Profiles &...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Company Financial Data | Private & Public Companies | Verified Profiles & Contact Data | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/b2b-contact-data-premium-us-contact-data-us-b2b-contact-d-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Korea (Democratic People's Republic of), Suriname, Montserrat, Guam, United Kingdom, Togo, Antigua and Barbuda, Iceland, Georgia, Dominican Republic
    Description

    Success.ai offers a cutting-edge solution for businesses and organizations seeking Company Financial Data on private and public companies. Our comprehensive database is meticulously crafted to provide verified profiles, including contact details for financial decision-makers such as CFOs, financial analysts, corporate treasurers, and other key stakeholders. This robust dataset is continuously updated and validated using AI technology to ensure accuracy and relevance, empowering businesses to make informed decisions and optimize their financial strategies.

    Key Features of Success.ai's Company Financial Data:

    Global Coverage: Access data from over 70 million businesses worldwide, including public and private companies across all major industries and regions. Our datasets span 250+ countries, offering extensive reach for your financial analysis and market research.

    Detailed Financial Profiles: Gain insights into company financials, including revenue, profit margins, funding rounds, and operational costs. Profiles are enriched with key contact details, including work emails, phone numbers, and physical addresses, ensuring direct access to decision-makers.

    Industry-Specific Data: Tailored datasets for sectors such as financial services, manufacturing, technology, healthcare, and energy, among others. Each dataset is customized to meet the unique needs of industry professionals and analysts.

    Real-Time Accuracy: With continuous updates powered by AI-driven validation, our financial data maintains a 99% accuracy rate, ensuring you have access to the most reliable and up-to-date information available.

    Compliance and Security: All data is collected and processed in strict adherence to global compliance standards, including GDPR, ensuring ethical and lawful usage.

    Why Choose Success.ai for Company Financial Data?

    Best Price Guarantee: We pride ourselves on offering the most competitive pricing in the industry, ensuring you receive unparalleled value for comprehensive financial data.

    AI-Validated Accuracy: Our advanced AI algorithms meticulously verify every data point to ensure precision and reliability, helping you avoid costly errors in your financial decision-making.

    Customized Data Solutions: Whether you need data for a specific region, industry, or type of business, we tailor our datasets to align perfectly with your requirements.

    Scalable Data Access: From small startups to global enterprises, our platform caters to businesses of all sizes, delivering scalable solutions to suit your operational needs.

    Comprehensive Use Cases for Financial Data:

    1. Strategic Financial Planning:

    Leverage our detailed financial profiles to create accurate budgets, forecasts, and strategic plans. Gain insights into competitors’ financial health and market positions to make data-driven decisions.

    1. Mergers and Acquisitions (M&A):

    Access key financial details and contact information to streamline your M&A processes. Identify potential acquisition targets or partners with verified profiles and financial data.

    1. Investment Analysis:

    Evaluate the financial performance of public and private companies for informed investment decisions. Use our data to identify growth opportunities and assess risk factors.

    1. Lead Generation and Sales:

    Enhance your sales outreach by targeting CFOs, financial analysts, and other decision-makers with verified contact details. Utilize accurate email and phone data to increase conversion rates.

    1. Market Research:

    Understand market trends and financial benchmarks with our industry-specific datasets. Use the data for competitive analysis, benchmarking, and identifying market gaps.

    APIs to Power Your Financial Strategies:

    Enrichment API: Integrate real-time updates into your systems with our Enrichment API. Keep your financial data accurate and current to drive dynamic decision-making and maintain a competitive edge.

    Lead Generation API: Supercharge your lead generation efforts with access to verified contact details for key financial decision-makers. Perfect for personalized outreach and targeted campaigns.

    Tailored Solutions for Industry Professionals:

    Financial Services Firms: Gain detailed insights into revenue streams, funding rounds, and operational costs for competitor analysis and client acquisition.

    Corporate Finance Teams: Enhance decision-making with precise data on industry trends and benchmarks.

    Consulting Firms: Deliver informed recommendations to clients with access to detailed financial datasets and key stakeholder profiles.

    Investment Firms: Identify potential investment opportunities with verified data on financial performance and market positioning.

    What Sets Success.ai Apart?

    Extensive Database: Access detailed financial data for 70M+ companies worldwide, including small businesses, startups, and large corporations.

    Ethical Practices: Our data collection and processing methods are fully comp...

  8. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  9. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  10. Top Global Companies Innovators & Giants 🌍🏢

    • kaggle.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sheikh Muhammad Abdullah (2024). Top Global Companies Innovators & Giants 🌍🏢 [Dataset]. https://www.kaggle.com/datasets/abdmental01/top-companies
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sheikh Muhammad Abdullah
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Data Description

    The dataset provided includes information about various companies, their stock symbols, financial metrics such as price-to-book ratio and share price, as well as details about their origin countries. Additionally, the dataset contains frequency distribution information for certain ranges of price-to-book ratios and share prices.

    About Data

    The dataset appears to be a compilation of financial data for different companies, likely for investment analysis or comparison purposes. It includes the following key components:

    • Rank: Rank of the company based on some criteria (not explicitly mentioned).
    • Company: Name of the company.
    • Stock Symbol: Symbol used to identify the company's stock in trading.
    • Price to Book Ratio: Financial metric indicating the relationship between a company's market value and its book value.
    • Share Price (USD): Price of a single share of the company's stock in US dollars.
    • Company Origin: Country where the company is based.
    • Label Count: Frequency distribution information for certain ranges of price-to-book ratios and share prices.

    This dataset can be utilized for various financial analyses such as company valuation, comparison of financial metrics across companies, and investment decision-making.

  11. Japan JP: Market Capitalization: Listed Domestic Companies

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Japan JP: Market Capitalization: Listed Domestic Companies [Dataset]. https://www.ceicdata.com/en/japan/financial-sector/jp-market-capitalization-listed-domestic-companies
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Japan
    Variables measured
    Turnover
    Description

    Japan JP: Market Capitalization: Listed Domestic Companies data was reported at 6,222.825 USD bn in 2017. This records an increase from the previous number of 4,955.300 USD bn for 2016. Japan JP: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 3,005.697 USD bn from Dec 1975 (Median) to 2017, with 43 observations. The data reached an all-time high of 6,222.825 USD bn in 2017 and a record low of 21.530 USD bn in 1977. Japan JP: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Japan – Table JP.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  12. US Company Filings Database

    • lseg.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2025). US Company Filings Database [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/filings/company-filings-database
    Explore at:
    csv,html,json,pdf,python,text,user interface,xmlAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Area covered
    United States
    Description

    Browse LSEG's US Company Filings Database, and find a range of filings content and history including annual reports, municipal bonds, and more.

  13. 2023 Fortune 1000 Companies

    • kaggle.com
    Updated Sep 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    k04dRunn3r (2023). 2023 Fortune 1000 Companies [Dataset]. https://www.kaggle.com/datasets/jeannicolasduval/2023-fortune-1000-companies-info
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    Kaggle
    Authors
    k04dRunn3r
    Description

    Data from Fortune 500's 2023 ranking.
    Includes data on top 1000 companies w/ additional info (Stock symbol/*ticker*, CEO name).

    Update (New dataset): 2024 Fortune 1000 Companies

    What Is the Fortune 1000?

    From Investopedia:

    The Fortune 1000 is an annual list of the 1000 largest American companies maintained by the popular magazine Fortune Fortune ranks the eligible companies by revenue generated from core operations, discounted operations, and consolidated subsidiaries Since revenue is the basis for inclusion, every company is authorized to operate in the United States and files a 10-K or comparable financial statement with a government agency -- .

    Project Background

    Fortune magazine publishes this list every year and some lists can be found from different sources. From looking at this year's available datasets, some features were missing or could not be found. This was built from scraping the standard features as well as what's included on Company Info (such as CEO, Ticker and website) from the Fortune magazine website. Details on how the data was generated can be found on this notebook where a few of the features were also visualized.

    The source code from the 2023 fortune 500 Ranking includes 1000 companies. A reference page (slug) to additional info is included for each companies which were also scrapped to complete the dataset.

    The Dataset

    Available formats: csv, parquet

    Features are follows:

    [Note: References to datatypes are relevant when using the parquet file; Labels refer to the original website names]

    • Rank
        dtype: int64; Label: Rank
    • Company
        dtype: object; Label: Company
    • Ticker
        dtype: object; Label: Ticker
    • Sector
        dtype: category; Label: Sector
    • Industry
        dtype: category; Label: Industry
    • Profitable
        dtype: category; Label: Profitable
    • Founder_is_CEO
        dtype: category; Label: Founder is CEO
    • FemaleCEO
        dtype: category; Label: Female CEO
    • Growth_in_Jobs
        dtype: category; Label: Growth in Jobs
    • Change_in_Rank
        dtype: float64; Label: Change in Rank (Full 1000)
    • Gained_in_Rank
        dtype: category; Label: Gained in Rank
    • Dropped_in_Rank
        dtype: category; Label: Dropped in Rank
    • Newcomer_to_the_Fortune500
        dtype: category; Label: Newcomer to the Fortune 500
    • Global500
        dtype: category; Label: Global 500
    • Best_Companies
        dtype: category; Label: Best Companies
    • Number_of_employees
        dtype: int64; Label: Employees
    • MarketCap_March31_M
        dtype: float64; Label: Market Value — as of March 31, 2023 ($M)
    • Revenues_M
        dtype: int64; Label: Revenues ($M)
    • RevenuePercentChange
        dtype: float64; Label: Revenue Percent Change
    • Profits_M
        dtype: int64; Label: Profits ($M)
    • ProfitsPercentChange
        dtype: float64; Label: Profits Percent Change
    • Assets_M
        dtype: int64; Label: Assets ($M)
    • CEO
        dtype: object; Label: CEO
    • Country
        dtype: category; Label: Country
    • HeadquartersCity
        dtype: object; Label: Headquarters City
    • HeadquartersState
        dtype: category; Label: Headquarters State
    • Website
        dtype: object; Label: Website
    • CompanyType
        dtype: category; Label: Company type
    • Footnote
        dtype: object; Label: Footnote
    • MarketCap_Updated_M
        dtype: float64; Label: Market value ($M)
    • Updated
        dtype: datetime64[ns]; Label: Updated Click to add a cell.
  14. Open Data 500 Companies

    • kaggle.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GovLab (2017). Open Data 500 Companies [Dataset]. https://www.kaggle.com/govlab/open-data-500-companies/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GovLab
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    The Open Data 500, funded by the John S. and James L. Knight Foundation (http://www.knightfoundation.org/) and conducted by the GovLab, is the first comprehensive study of U.S. companies that use open government data to generate new business and develop new products and services.

    Study Goals

    • Provide a basis for assessing the economic value of government open data

    • Encourage the development of new open data companies

    • Foster a dialogue between government and business on how government data can be made more useful

    The Govlab's Approach

    The Open Data 500 study is conducted by the GovLab at New York University with funding from the John S. and James L. Knight Foundation. The GovLab works to improve people’s lives by changing how we govern, using technology-enabled solutions and a collaborative, networked approach. As part of its mission, the GovLab studies how institutions can publish the data they collect as open data so that businesses, organizations, and citizens can analyze and use this information.

    Company Identification

    The Open Data 500 team has compiled our list of companies through (1) outreach campaigns, (2) advice from experts and professional organizations, and (3) additional research.

    Outreach Campaign

    • Mass email to over 3,000 contacts in the GovLab network

    • Mass email to over 2,000 contacts OpenDataNow.com

    • Blog posts on TheGovLab.org and OpenDataNow.com

    • Social media recommendations

    • Media coverage of the Open Data 500

    • Attending presentations and conferences

    Expert Advice

    • Recommendations from government and non-governmental organizations

    • Guidance and feedback from Open Data 500 advisors

    Research

    • Companies identified for the book, Open Data Now

    • Companies using datasets from Data.gov

    • Directory of open data companies developed by Deloitte

    • Online Open Data Userbase created by Socrata

    • General research from publicly available sources

    What The Study Is Not

    The Open Data 500 is not a rating or ranking of companies. It covers companies of different sizes and categories, using various kinds of data.

    The Open Data 500 is not a competition, but an attempt to give a broad, inclusive view of the field.

    The Open Data 500 study also does not provide a random sample for definitive statistical analysis. Since this is the first thorough scan of companies in the field, it is not yet possible to determine the exact landscape of open data companies.

  15. m

    Gender Diversity, Corporate Governance and Firm Specific Data of All Public...

    • data.mendeley.com
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafisah Yami (2023). Gender Diversity, Corporate Governance and Firm Specific Data of All Public Listed US Firms [Dataset]. http://doi.org/10.17632/fdw347mttz.1
    Explore at:
    Dataset updated
    Oct 11, 2023
    Authors
    Nafisah Yami
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset covers all publically listed companies in the United States from 2000 to 2018, which are listed in the S&P index. The starting point of 2000 is due to the minimal data available in the BoardEX database before this time in relation to board directors' information. Compustat is the source of financial data. As previous research indicates, financial and utilities firms are excluded from the sample due to their distinct regulations, which expose their directors to liability risks that non-financial firms are not subject to (Adams and Mehran, 2012; Sila et al., 2016). The sample size of non-financial firms amounts to 17,220. Financial variable outliers are adjusted to the 98% level in accordance with Bharath and Shumway's (2008) study.

  16. United States US: Market Capitalization: Listed Domestic Companies: % of GDP...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Market Capitalization: Listed Domestic Companies: % of GDP [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-market-capitalization-listed-domestic-companies--of-gdp
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Market Capitalization: Listed Domestic Companies: % of GDP data was reported at 165.651 % in 2017. This records an increase from the previous number of 146.862 % for 2016. United States US: Market Capitalization: Listed Domestic Companies: % of GDP data is updated yearly, averaging 102.679 % from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 165.651 % in 2017 and a record low of 39.352 % in 1981. United States US: Market Capitalization: Listed Domestic Companies: % of GDP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values.; ; World Federation of Exchanges database.; Weighted average; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  17. SEC Public Dataset

    • console.cloud.google.com
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:U.S.%20Securities%20and%20Exchange%20Commission&hl=de&inv=1&invt=Ab1UyA (2023). SEC Public Dataset [Dataset]. https://console.cloud.google.com/marketplace/product/sec-public-data-bq/sec-public-dataset?hl=de
    Explore at:
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Googlehttp://google.com/
    Description

    In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.Weitere Informationen

  18. US Stock Market Giants: Top Companies Stocks Data

    • kaggle.com
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). US Stock Market Giants: Top Companies Stocks Data [Dataset]. https://www.kaggle.com/datasets/azharsaleem/us-stock-market-giants-top-companies-stocks-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 8, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    Stock Data of Top USA Companies: Apple, Tesla, Amazon

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Description

    This dataset provides daily stock data for some of the top companies in the USA stock market, including major players like Apple, Microsoft, Amazon, Tesla, and others. The data is collected from Yahoo Finance, covering each company’s historical data from its starting date until today. This comprehensive dataset enables in-depth analysis of key financial indicators and stock trends for each company, making it valuable for multiple applications.

    Column Descriptions

    The dataset contains the following columns, consistent across all companies:

    • Date: The date of the stock data entry.
    • Open: The stock's opening price for the day.
    • High: The highest price reached during the trading day.
    • Low: The lowest price during the trading day.
    • Close: The stock’s closing price for the day.
    • Volume: The total number of shares traded on that day.
    • Dividends: Any dividends paid out on that day.
    • Stock Splits: Records stock split events, if any, on that day.

    Potential Use Cases

    1. Machine Learning & Deep Learning:

      • Stock Price Prediction: Use historical prices to train models for forecasting future stock prices.
      • Sentiment Analysis and Price Correlation: Combine with external sentiment data to predict price movements based on market sentiment.
      • Anomaly Detection: Detect unusual price patterns or volume spikes using classification algorithms.
    2. Data Science:

      • Trend Analysis: Identify long-term trends for each company or compare trends between companies.
      • Volatility Analysis: Calculate volatility to assess risk and return patterns over time.
      • Correlation Analysis: Compare stock performance across companies to study market relationships.
    3. Data Analysis:

      • Historical Performance: Review historical data to understand growth trends, market impact of stock splits, and dividends.
      • Seasonal Patterns: Analyze data for seasonal trends or recurring patterns across years.
      • Investment Strategy Backtesting: Test various investment strategies based on historical data to assess potential profitability.
    4. Financial Research:

      • Economic Impact Studies: Investigate how major events affected stock prices across top companies.
      • Sector-Specific Analysis: Identify performance differences across sectors, such as tech, healthcare, and retail.

    This dataset is a powerful tool for analysts, researchers, and financial enthusiasts, offering versatility across multiple domains from stock analysis to algorithmic trading models.

  19. Iran IR: Market Capitalization: Listed Domestic Companies

    • ceicdata.com
    Updated Mar 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Iran IR: Market Capitalization: Listed Domestic Companies [Dataset]. https://www.ceicdata.com/en/iran/financial-sector/ir-market-capitalization-listed-domestic-companies
    Explore at:
    Dataset updated
    Mar 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Iran
    Variables measured
    Turnover
    Description

    Iran IR: Market Capitalization: Listed Domestic Companies data was reported at 108.635 USD bn in 2017. This records a decrease from the previous number of 111.402 USD bn for 2016. Iran IR: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 27.544 USD bn from Dec 1975 (Median) to 2017, with 29 observations. The data reached an all-time high of 345.777 USD bn in 2013 and a record low of 1.287 USD bn in 1993. Iran IR: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  20. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Jun 27, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 40183 points on June 27, 2025, gaining 1.51% from the previous session. Over the past month, the index has climbed 6.52% and is up 1.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on June of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
Organization logo

United States US: No of Listed Domestic Companies: Total

Explore at:
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2006 - Dec 1, 2017
Area covered
United States
Variables measured
Turnover
Description

United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

Search
Clear search
Close search
Google apps
Main menu