100+ datasets found
  1. United States US: No of Listed Domestic Companies: Total

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  2. d

    BrightQuery (BQ) Public Companies Dataset (4000 US companies covered)

    • datarade.ai
    Updated Apr 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Query (2021). BrightQuery (BQ) Public Companies Dataset (4000 US companies covered) [Dataset]. https://datarade.ai/data-products/brightquery-bq-public-companies-dataset-bright-query
    Explore at:
    Dataset updated
    Apr 22, 2021
    Dataset authored and provided by
    Bright Query
    Area covered
    United States
    Description

    Dataset containing over 5000 data metrics (including raw data and BQ calculated scores & metrics) for over 4000 public companies (~95% of the Russell 3000). Includes financials (from SEC filings) as well as data that is not reported to the SEC, including monthly headcount, detailed employee benefits data, credit events related to contributions to benefits plans. Also includes BQ scores, industry and macro statistics that provide a comprehensive view of the sector & industry.

    BQ's Public Companies dataset is applicable to both quantitative investment managers as well as fundamentals public equity investors, who wish to use alternative (non-financial) data to enhance their investment analysis and investment decisions.

  3. w

    Dataset of public companies in the United States

    • workwithdata.com
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of public companies in the United States [Dataset]. https://www.workwithdata.com/datasets/public-companies?f=1&fcol0=country&fop0=%3D&fval0=United+States
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset is about companies in the United States. It has 4,752 rows. It features 17 columns including sector, industry, website, and city.

  4. United States US: Market Capitalization: Listed Domestic Companies

    • ceicdata.com
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Market Capitalization: Listed Domestic Companies [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-market-capitalization-listed-domestic-companies
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Market Capitalization: Listed Domestic Companies data was reported at 32,120.703 USD bn in 2017. This records an increase from the previous number of 27,352.201 USD bn for 2016. United States US: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 11,322.354 USD bn from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 32,120.703 USD bn in 2017 and a record low of 1,263.561 USD bn in 1981. United States US: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  5. Financial Statement Data Sets

    • kaggle.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vadim Vanak (2025). Financial Statement Data Sets [Dataset]. https://www.kaggle.com/datasets/vadimvanak/company-facts-2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vadim Vanak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset offers a detailed collection of US-GAAP financial data extracted from the financial statements of exchange-listed U.S. companies, as submitted to the U.S. Securities and Exchange Commission (SEC) via the EDGAR database. Covering filings from January 2009 onwards, this dataset provides key financial figures reported by companies in accordance with U.S. Generally Accepted Accounting Principles (GAAP).

    Dataset Features:

    • Data Scope: The dataset is restricted to figures reported under US-GAAP standards, with the exception of EntityCommonStockSharesOutstanding and EntityPublicFloat.
    • Currency and Units: The dataset exclusively includes figures reported in USD or shares, ensuring uniformity and comparability. It excludes ratios and non-financial metrics to maintain focus on financial data.
    • Company Selection: The dataset is limited to companies with U.S. exchange tickers, providing a concentrated analysis of publicly traded firms within the United States.
    • Submission Types: The dataset only incorporates data from 10-Q, 10-K, 10-Q/A, and 10-K/A filings, ensuring consistency in the type of financial reports analyzed.

    Data Sources and Extraction:

    This dataset primarily relies on the SEC's Financial Statement Data Sets and EDGAR APIs: - SEC Financial Statement Data Sets - EDGAR Application Programming Interfaces

    In instances where specific figures were missing from these sources, data was directly extracted from the companies' financial statements to ensure completeness.

    Please note that the dataset presents financial figures exactly as reported by the companies, which may occasionally include errors. A common issue involves incorrect reporting of scaling factors in the XBRL format. XBRL supports two tag attributes related to scaling: 'decimals' and 'scale.' The 'decimals' attribute indicates the number of significant decimal places but does not affect the actual value of the figure, while the 'scale' attribute adjusts the value by a specific factor.

    However, there are several instances, numbering in the thousands, where companies have incorrectly used the 'decimals' attribute (e.g., 'decimals="-6"') under the mistaken assumption that it controls scaling. This is not correct, and as a result, some figures may be inaccurately scaled. This dataset does not attempt to detect or correct such errors; it aims to reflect the data precisely as reported by the companies. A future version of the dataset may be introduced to address and correct these issues.

    The source code for data extraction is available here

  6. Biggest companies in the world by market value 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Biggest companies in the world by market value 2024 [Dataset]. https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-capitalization/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 17, 2024
    Area covered
    World
    Description

    With a market capitalization of 3.12 trillion U.S. dollars as of May 2024, Microsoft was the world’s largest company that year. Rounding out the top five were some of the world’s most recognizable brands: Apple, NVIDIA, Google’s parent company Alphabet, and Amazon. Saudi Aramco led the ranking of the world's most profitable companies in 2023, with a pre-tax income of nearly 250 billion U.S. dollars. How are market value and market capitalization determined? Market value and market capitalization are two terms frequently used – and confused - when discussing the profitability and viability of companies. Strictly speaking, market capitalization (or market cap) is the worth of a company based on the total value of all their shares; an important metric when determining the comparative value of companies for trading opportunities. Accordingly, many stock exchanges such as the New York or London Stock Exchange release market capitalization data on their listed companies. On the other hand, market value technically refers to what a company is worth in a much broader context. It is determined by multiple factors, including profitability, corporate debt, and the market environment as a whole. In this sense it aims to estimate the overall value of a company, with share price only being one element. Market value is therefore useful for determining whether a company’s shares are over- or undervalued, and in arriving at a price if the company is to be sold. Such valuations are generally made on a case-by-case basis though, and not regularly reported. For this reason, market capitalization is often reported as market value. What are the top companies in the world? The answer to this question depends on the metric used. Although the largest company by market capitalization, Microsoft's global revenue did not manage to crack the top 20 companies. Rather, American multinational retailer Walmart was ranked as the largest company in the world by revenue. Walmart also had the highest number of employees in the world.

  7. T

    United States - Number Of Listed Companies Per 1,000,000 People

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States - Number Of Listed Companies Per 1,000,000 People [Dataset]. https://tradingeconomics.com/united-states/number-of-listed-companies-per-1000000-people-wb-data.html
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jun 25, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Number of listed companies per 1,000,000 people in United States was reported at 12.99 in 2019, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Number of listed companies per 1,000,000 people - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.

  8. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  9. d

    Firmographic Data | 4MM + US Private and Public Companies | Employees,...

    • datarade.ai
    .json, .csv, .xls
    Updated Oct 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salutary Data (2023). Firmographic Data | 4MM + US Private and Public Companies | Employees, Revenue, Website, Industry + More Firmographics [Dataset]. https://datarade.ai/data-products/salutary-data-firmographic-data-4m-us-private-and-publi-salutary-data
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    Salutary Data
    Area covered
    United States
    Description

    Salutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.

    We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.

    What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.

    Products: API Suite Web UI Full and Custom Data Feeds

    Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new “look alike” prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and we’ll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (“Cleaning/Hygiene”) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.

  10. Company Financial Data | Private & Public Companies | Verified Profiles &...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Company Financial Data | Private & Public Companies | Verified Profiles & Contact Data | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/b2b-contact-data-premium-us-contact-data-us-b2b-contact-d-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Togo, Suriname, Iceland, Georgia, Montserrat, Antigua and Barbuda, Korea (Democratic People's Republic of), United Kingdom, Dominican Republic, Guam
    Description

    Success.ai offers a cutting-edge solution for businesses and organizations seeking Company Financial Data on private and public companies. Our comprehensive database is meticulously crafted to provide verified profiles, including contact details for financial decision-makers such as CFOs, financial analysts, corporate treasurers, and other key stakeholders. This robust dataset is continuously updated and validated using AI technology to ensure accuracy and relevance, empowering businesses to make informed decisions and optimize their financial strategies.

    Key Features of Success.ai's Company Financial Data:

    Global Coverage: Access data from over 70 million businesses worldwide, including public and private companies across all major industries and regions. Our datasets span 250+ countries, offering extensive reach for your financial analysis and market research.

    Detailed Financial Profiles: Gain insights into company financials, including revenue, profit margins, funding rounds, and operational costs. Profiles are enriched with key contact details, including work emails, phone numbers, and physical addresses, ensuring direct access to decision-makers.

    Industry-Specific Data: Tailored datasets for sectors such as financial services, manufacturing, technology, healthcare, and energy, among others. Each dataset is customized to meet the unique needs of industry professionals and analysts.

    Real-Time Accuracy: With continuous updates powered by AI-driven validation, our financial data maintains a 99% accuracy rate, ensuring you have access to the most reliable and up-to-date information available.

    Compliance and Security: All data is collected and processed in strict adherence to global compliance standards, including GDPR, ensuring ethical and lawful usage.

    Why Choose Success.ai for Company Financial Data?

    Best Price Guarantee: We pride ourselves on offering the most competitive pricing in the industry, ensuring you receive unparalleled value for comprehensive financial data.

    AI-Validated Accuracy: Our advanced AI algorithms meticulously verify every data point to ensure precision and reliability, helping you avoid costly errors in your financial decision-making.

    Customized Data Solutions: Whether you need data for a specific region, industry, or type of business, we tailor our datasets to align perfectly with your requirements.

    Scalable Data Access: From small startups to global enterprises, our platform caters to businesses of all sizes, delivering scalable solutions to suit your operational needs.

    Comprehensive Use Cases for Financial Data:

    1. Strategic Financial Planning:

    Leverage our detailed financial profiles to create accurate budgets, forecasts, and strategic plans. Gain insights into competitors’ financial health and market positions to make data-driven decisions.

    1. Mergers and Acquisitions (M&A):

    Access key financial details and contact information to streamline your M&A processes. Identify potential acquisition targets or partners with verified profiles and financial data.

    1. Investment Analysis:

    Evaluate the financial performance of public and private companies for informed investment decisions. Use our data to identify growth opportunities and assess risk factors.

    1. Lead Generation and Sales:

    Enhance your sales outreach by targeting CFOs, financial analysts, and other decision-makers with verified contact details. Utilize accurate email and phone data to increase conversion rates.

    1. Market Research:

    Understand market trends and financial benchmarks with our industry-specific datasets. Use the data for competitive analysis, benchmarking, and identifying market gaps.

    APIs to Power Your Financial Strategies:

    Enrichment API: Integrate real-time updates into your systems with our Enrichment API. Keep your financial data accurate and current to drive dynamic decision-making and maintain a competitive edge.

    Lead Generation API: Supercharge your lead generation efforts with access to verified contact details for key financial decision-makers. Perfect for personalized outreach and targeted campaigns.

    Tailored Solutions for Industry Professionals:

    Financial Services Firms: Gain detailed insights into revenue streams, funding rounds, and operational costs for competitor analysis and client acquisition.

    Corporate Finance Teams: Enhance decision-making with precise data on industry trends and benchmarks.

    Consulting Firms: Deliver informed recommendations to clients with access to detailed financial datasets and key stakeholder profiles.

    Investment Firms: Identify potential investment opportunities with verified data on financial performance and market positioning.

    What Sets Success.ai Apart?

    Extensive Database: Access detailed financial data for 70M+ companies worldwide, including small businesses, startups, and large corporations.

    Ethical Practices: Our data collection and processing methods are fully comp...

  11. US Stock Market

    • kaggle.com
    Updated May 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Milad (2021). US Stock Market [Dataset]. https://www.kaggle.com/mryder/us-stock-market-historical-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 26, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Milad
    Description

    Context

    I always wanted to have a program that fetch the whole stock market data at once without concerning about new companies that went public recently. So, here it is.

    Content

    This dataset contains 2 python scripts which one can fetch the data from on their own machine without any special requirements by just running the collect.py . I have done this part in May/21/2021 (Version 2). So, the data is available until then. If one wants to have extend that period, they can run the collect.py .

    Columns Description

    tickers.csv contains ticker names along with some additional data such as name of the company, sector, industry, and the country of the company.

    Each CSV file in stocksData folder named as the company's ticker name. Each file has 8 columns: - Date: as an index. - Open, Close, High, Low: which is in dollars. - Volume: which is number of shares that traded in specific date. - Stock Splits: Show if there is a stock split in specific day as the split ratio. - Dividends: which is in dollars. If a company doesn’t provide dividends for their share holders, this column can be dropped.

    Acknowledgements

    I've used finviz site and yfinance package to gather this rich data.

    Inspiration

    I hope one can find this helpful and interesting. If you have any questions don't hesitate to contact me at milad@miladtabrizi.com .

  12. A

    ‘Fortune 1000’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Fortune 1000’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-fortune-1000-03c3/b2a55ac6/?iid=026-666&v=presentation
    Explore at:
    Dataset updated
    Nov 13, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Fortune 1000’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/winston56/fortune-500-data-2021 on 13 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    Every year Fortune, an American Business Magazine, publishes the Fortune 500, which ranks the top 500 corporations by revenue. This dataset includes the entire Fortune 1000, as opposed to just the top 500.

    Content

    The Fortune 1000 dataset is from the Fortune website, collected by the processes outlined in this notebook. It contains U.S. company data for the year 2021. The dataset is 1000 rows and 18 columns.

    Features

    • Company - values are the name of the company
    • Rank - The 2021 rank established by Fortune (1-1000)
    • Rank Change - The change in the rank from 2020 to 2021. There is only a rank change listed if the company is currently in the top 500 and was previously in the top 500.
    • Revenue - Revenue of each company in millions. This is the criteria used to rank each company.
    • Profit - Profit of each company in millions.
    • Num. of Employees - The number of employees each company employs.
    • Sector - The sector of the market the company operates in.
    • City - The city where the company's headquarters is located.
    • State - The state where the company's headquarters is located
    • Newcomer - Indicates whether or not the company is new to the top Fortune 500 ("yes" or "no"). No value will be listed for companies outside of the top 500.
    • CEO Founder - Indicates whether the CEO of the company is also the founder ("yes" or "no").
    • CEO Woman - Indicates whether the CEO of the company is a woman ("yes" or "no").
    • Profitable - Indicates whether the company is profitable or not ("yes" or "no").
    • Prev. Rank - The 2020 rank of the company, as established by Fortune. There will only be previous rank data for the top 500 companies.
    • CEO - The name of the CEO of the company
    • Website - The url of the company website
    • Ticker - The stock ticker symbol of public companies. Some rows will have empty values because the company is a private corporation.
    • Market Cap - The market cap (or value) of the company in millions. Some rows will have empty values because the company is private. Market valuations were determined on January 20, 2021.

    Inspiration

    This dataset is made to explore the top corporations in the U.S. Answer questions such as: What percentage of companies have women ceo's? How many companies are newcomers? What percentage of companies have ceos who were also founders? What role does profitability play in ranking?

    --- Original source retains full ownership of the source dataset ---

  13. h

    stock-market-tweets-data

    • huggingface.co
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephan Akkerman (2023). stock-market-tweets-data [Dataset]. https://huggingface.co/datasets/StephanAkkerman/stock-market-tweets-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2023
    Authors
    Stephan Akkerman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Stock Market Tweets Data

      Overview
    

    This dataset is the same as the Stock Market Tweets Data on IEEE by Bruno Taborda.

      Data Description
    

    This dataset contains 943,672 tweets collected between April 9 and July 16, 2020, using the S&P 500 tag (#SPX500), the references to the top 25 companies in the S&P 500 index, and the Bloomberg tag (#stocks).

      Dataset Structure
    

    created_at: The exact time this tweet was posted. text: The text of the tweet, providing… See the full description on the dataset page: https://huggingface.co/datasets/StephanAkkerman/stock-market-tweets-data.

  14. United States US: Stocks Traded: Total Value

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  15. d

    Hiring Activity dataset on 5,400 US public companies

    • datarade.ai
    .json, .sql
    Updated Jan 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Contora Inc. (2022). Hiring Activity dataset on 5,400 US public companies [Dataset]. https://datarade.ai/data-products/contora-s-hiring-activity-dataset-on-5-400-us-public-companies-contora-inc
    Explore at:
    .json, .sqlAvailable download formats
    Dataset updated
    Jan 10, 2022
    Dataset authored and provided by
    Contora Inc.
    Area covered
    United States
    Description

    We track hiring activity and employees growth for all US public companies. For each company, we have a link to its Indeed, Glassdoor, and Linkedin profiles, which allows us to understand growth trends in real-time.

    The main fields are the number of open job positions, headcount, and various employee ratings (diversity, salary satisfaction, etc.). The dataset has 1 year of history, and the data is updated daily.

    This data gives answers to such questions as: - Which companies are most actively hiring right now? - Which companies had the most significant growth of employees over the past week/month/year? - Which companies have the highest rates from employees in terms of ESG, and which ones cannot retain an employee for more than a month?

    Such data helps estimate the risks of long-term investing in shares and is valuable for Hedge Funds, M&A firms, and consulting companies.

  16. High-Tech Companies on NASDAQ

    • kaggle.com
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). High-Tech Companies on NASDAQ [Dataset]. https://www.kaggle.com/datasets/thedevastator/high-tech-companies-on-nasdaq
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    High-Tech Companies on NASDAQ

    Market Capitalization and Performance Metrics

    By [source]

    About this dataset

    This dataset offers an insightful look into the performance of high-tech companies listed on the NASDAQ exchange in the United States. With information pertaining to over 8,000 companies in the electronics, computers, telecommunications, and biotechnology sectors, this is an incredibly useful source of insight for researchers, traders, investors and data scientists interested in acquiring information about these firms.

    The dataset includes detailed variables such as stock symbols and names to provide quick identification of individual companies along with pricing changes and percentages from the previous day’s value as well as sector and industry breakdowns for comprehensive analysis. Other metrics like market capitalization values help to assess a firm’s relative size compared to competitors while share volume data can give a glimpse into how actively traded each company is. Additionally provided numbers include earnings per share breakdowns to gauge profits along with dividend pay date symbols for yield calculation purposes as well as beta values that further inform risk levels associated with investing in particular firms within this high-tech sector. Finally this dataset also collects any potential errors found amongst such extensive scrapes of company performance data giving users valuable reassurance no sensitive areas are missed when assessing various firms on an individual basis or all together as part of an overarching system

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset is invaluable for researchers, traders, investors and data scientists who want to obtain the latest information about high-tech companies listed on the NASDAQ exchange in the United States. It contains data on more than 8,000 companies from a wide range of sectors such as electronics, computers, telecommunications, biotechnology and many more. In this guide we will learn how to use this dataset effectively.

    Basics: The basics of working with this dataset include understanding various columns like symbol, name, price,pricing_changes, pricing_percentage_changes,sector,industry,market_cap,share_volume,earnings_per_share. Each column is further described below: - Symbol: This column gives you the stock symbol of the company. (String) - Name: This column gives you the name of the company. (String)
    - Price: The current price of each stock given by symbol is mentioned here.(Float) - Pricing Changes: This represents change in stock price from previous day.(Float) - Pricing Percentage Changes :This provides percentage change in stock prices from previous day.(Float) - Sector : It give information about sector in which company belongs .(String). - Industry : Describe industry in which company lies.(string). - Market Capitalization : Give market capitalization .(String). - Share Volume : It refers to number share traded last 24 hrs.(Integer). - Earnings Per Share : It refer to earnings per share per Stock yearly divided by Dividend Yield ,Symbol Yield and Beta .It also involves Errors related with Data Set so errors specified here proviedes details regarding same if any errors occured while collecting data set or manipulation on it.. (float/string )

    Advanced Use Cases: Now that we understand what each individual feature stands for it's time to delve deeper into optimizing returns using this data set as basis for our decision making processes such as selecting right portfolio formation techniques or selecting stocks wisely contrarian investment style etc. We can do a comparison using multiple factors like Current Price followed by Price Change percentage or Earnings feedback loop which would help us identify Potentially Undervalued investments both Short Term & Long Term ones at same time and We could dive into analysis showing Relationship between Price & Volumne across Sectors and

    Research Ideas

    • Analyzing stock trends - The dataset enables users to make informed decisions by tracking and analyzing changes in indicators such as price, sector, industry or market capitalization trends over time.
    • Exploring correlations between different factors - By exploring the correlation between different factors such as pricing changes, earning per share or beta etc., it enables us to get a better understanding of how these elements influence each other and what implications it may have on our investments

    Acknowledgements

    &g...

  17. S&P Compustat Database

    • lseg.com
    sql
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2024). S&P Compustat Database [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/company-data/fundamentals-data/standardized-fundamentals/sp-compustat-database
    Explore at:
    sqlAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Access historical and point-in-time financial statements, ratios, multiples, and press releases, with LSEG's S&P Compustat Database.

  18. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. d

    Proxy Voting Records

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated May 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Proxy Voting Records [Dataset]. https://catalog.data.gov/dataset/proxy-voting-records
    Explore at:
    Dataset updated
    May 24, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Proxy voting records for the New York City Retirement Systems. This data set sets forth how the New York City Retirement Systems have voted their shares in the companies in which they hold stock. These records reflect how the the Systems voted on such issues as board of director elections and company and shareholder proposals.

  20. United States Market Capitalization: % of GDP

    • ceicdata.com
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States Market Capitalization: % of GDP [Dataset]. https://www.ceicdata.com/en/indicator/united-states/market-capitalization--nominal-gdp
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    United States
    Description

    Key information about United States Market Capitalization: % of GDP

    • United States Market Capitalization accounted for 155.0 % of its Nominal GDP in Dec 2022, compared with a percentage of 205.0 % in the previous year
    • US Market Capitalization: % Nominal GDP is updated yearly, available from Dec 1975 to Dec 2022
    • The data reached an all-time high of 205.0 % in Dec 2021 and a record low of 36.7 % in Dec 1978

    The World Bank provides annual Market Capitalization as % of Nominal GDP. Market Capitalization includes domestic companies listed at the end of the year and excludes investment companies, mutual funds and other collective investment vehicles

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2025). United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
Organization logo

United States US: No of Listed Domestic Companies: Total

Explore at:
Dataset updated
Feb 15, 2025
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2006 - Dec 1, 2017
Area covered
United States
Variables measured
Turnover
Description

United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

Search
Clear search
Close search
Google apps
Main menu