Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Puerto Rico population pyramid, which represents the Puerto Rico population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Puerto Rico Population by Age. You can refer the same here
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
The American Community Survey (ACS) is a relatively new survey conducted by the U.S. Census Bureau. It uses a series of monthly samples to produce annually updated estimates for the same small areas (census tracts and block groups) formerly surveyed via the decennial census long-form sample. Initially, five years of samples were required to produce these small-area data. Once the Census Bureau, released its first 5-year estimates in December 2010; new small-area statistics now are produced annually. The Census Bureau also will produce 3-year and 1-year data products for larger geographic areas. The ACS includes people living in both housing units (HUs) and group quarters (GQs). The ACS is conducted throughout the United States and in Puerto Rico, where it is called the Puerto Rico Community Survey (PRCS).
National coverage
UNIT DESCRIPTIONS: - Households: Dwelling places excluding institutions and transient quarters. - Group quarters: A place where people live or stay, in a group living arrangement, that is owned or managed by an entitiy or organization providing housing and/or services for the residents. This is not a typical household-type living arrangement. These services many include custodial or medical care as well as other types of assistance, and residency is commonly restricted to those receiving these services. People living in group quarters are usually not related to each other.
Residents of Puerto Rico.
Census/enumeration data [cen]
MICRODATA SOURCE: U.S. Census Bureau
SAMPLE UNIT: Household
SAMPLE FRACTION: 1%
SAMPLE SIZE (person records): 36,032
Face-to-face [f2f]
UNDERCOUNT: No official estimates
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Meriden Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Meriden, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Meriden.
Key observations
Among the Hispanic population in Meriden, regardless of the race, the largest group is of Puerto Rican origin, with a population of 14,162 (62.18% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Meriden Population by Race & Ethnicity. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Puerto Rico. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
The Public Use Microdata Sample (PUMS) for Puerto Rico (PR) contains a sample of responses to the Puerto Rico Community Survey (PRCS). The PRCS is similar to, but separate from, the American Community Survey (ACS). The PRCS collects data about the population and housing units in Puerto Rico. Puerto Rico data is not included in the national PUMS files. It is published as a state equivalent file and has a State FIPS code of "72". The file includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status). Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. Data are available at the state and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition Puerto Rico into contiguous geographic units containing roughly 100,000 people each. The Puerto Rico PUMS file for an individual year, such as 2022, contain data on approximately one percent of the Puerto Rico population.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national filewith no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independentdata set, or they can be combined to cover the entire nation. The Census Bureau includes landmarks in theMTDB for locating special features and to help enumerators during field operations. Some of the more common landmark types include area landmarks such as airports, cemeteries, parks, mountain peaks/summits, schools, and churches and other religious institutions. The Census Bureau has added landmark features to MTDB on an as-needed basis and made no attempt to ensure that all instances of a particular feature were included. The presence or absence of a landmark such as a hospital or prison does not mean that the living quarters associated with that landmark were geocoded to that census tabulation block or excluded from the census enumeration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wolcott town Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Wolcott town, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Wolcott town.
Key observations
Among the Hispanic population in Wolcott town, regardless of the race, the largest group is of Puerto Rican origin, with a population of 86 (67.88% of the total Hispanic population).
https://i.neilsberg.com/ch/wolcott-ct-population-by-race-and-ethnicity.jpeg" alt="Wolcott town Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wolcott town Population by Race & Ethnicity. You can refer the same here
Measure and Map Access to Grocery StoresFrom the perspective of the people living in each neighborhoodHow do people in your city get to the grocery store? The answer to that question depends on the person and where they live. This web map helps answer the question in this app.Some live in cities and stop by a grocery store within a short walk or bike ride of home or work. Others live in areas where car ownership is more prevalent, and so they drive to a store. Some do not own a vehicle, and rely on a friend or public transit. Others rely on grocery delivery for their needs. And, many live in rural areas far from town, so a trip to a grocery store is an infrequent event involving a long drive.This map from Esri shows which areas are within a ten minute walk or ten minute drive of a grocery store in the United States and Puerto Rico. Darker color indicates access to more stores. The chart shows how many people can walk to a grocery store if they wanted to or needed to.It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store.Look up your city to see how the numbers change as you move around the map. Or, draw a neighborhood boundary on the map to get numbers for that area.Every census block is scored with a count of walkable and drivable stores nearby, making this a map suitable for a dashboard for any city, or any of the 50 states, DC and Puerto Rico. Two colorful layers visualize this definition of access, one for walkable access (suitable for looking at a city neighborhood by neighborhood) and one for drivable access (suitable for looking across a city, county, region or state).On the walkable layer, shades of green define areas within a ten minute walk of one or more grocery stores. The colors become more intense and trend to a blue-green color for the busiest neighborhoods, such as downtown San Francisco. As you zoom in, a layer of Census block points visualizes the local population with or without walkable access.As you zoom out to see the entire city, the map adds a light blue - to dark blue layer, showing which parts of the region fall within ten minutes' drive of one or more grocery stores. As a result, the map is useful at all scales, from national to regional, state and local levels. It becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This MapUse this map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying.The map was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.There is data behind the map, which can be summarized to show how many people have walkable access to local grocery stores. The map includes a feature layer of population in Census block points, which are visible when you zoom in far enough. This feature layer can be plugged into an app like this one that summarizes the population with/without walkable or drivable access.Lastly, this map can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The map is a useful visual and analytic resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES RESIDENCE 1 YEAR AGO - DP02 Universe - Population 1 year and over Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 For the ACS, people who had moved from another residence in the United States or Puerto Rico 1 year earlier were asked to report the exact address (number and street name); the name of the city, town, or post office; the name of the U.S. county or municipio in Puerto Rico; state or Puerto Rico; and the ZIP Code where they lived 1 year ago. People living outside the United States and Puerto Rico were asked to report the name of the foreign country or U.S. Island Area where they were living 1 year ago.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems. The American Community Survey (ACS) is a relatively new survey conducted by the U.S. Census Bureau. It uses a series of monthly samples to produce annually updated estimates for the same small areas (census tracts and block groups) formerly surveyed via the decennial census long-form sample. Initially, five years of samples were required to produce these small-area data. Once the Census Bureau, released its first 5-year estimates in December 2010; new small-area statistics now are produced annually. The Census Bureau also will produce 3-year and 1-year data products for larger geographic areas. The ACS includes people living in both housing units (HUs) and group quarters (GQs). The ACS is conducted throughout the United States and in Puerto Rico, where it is called the Puerto Rico Community Survey (PRCS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundRecent efforts have been made to collect data on neighborhood-level attributes and link them to longitudinal population-based surveys. These linked data have allowed researchers to assess the influence of neighborhood characteristics on the health of older adults in the US. However, these data exclude Puerto Rico. Because of significantly differing historical and political contexts, and widely ranging structural factors between the island and the mainland, it may not be appropriate to apply current knowledge on neighborhood health effects based on studies conducted in the US to Puerto Rico. Thus, we aim to (1) examine the types of neighborhood environments older Puerto Rican adults reside in and (2) explore the association between neighborhood environments and all-cause mortality.MethodsWe linked data from the 2000 US Census to the longitudinal Puerto Rican Elderly Health Conditions Project (PREHCO) with mortality follow-up through 2021 to examine the effects of the baseline neighborhood environment on all-cause mortality among 3,469 participants. Latent profile analysis, a model-based clustering technique, classified Puerto Rican neighborhoods based on 19 census block group indicators related to the neighborhood constructs of socioeconomic status, household composition, minority status, and housing and transportation. The associations between the latent classes and all-cause mortality were assessed using multilevel mixed-effects parametric survival models with a Weibull distribution.ResultsA five-class model was fit on 2,477 census block groups in Puerto Rico with varying patterns of social (dis)advantage. Our results show that older adults residing in neighborhoods classified as Urban High Deprivation and Urban High-Moderate Deprivation in Puerto Rico were at higher risk of death over the 19-year study period relative to the Urban Low Deprivation cluster, controlling for individual-level covariates.ConclusionsConsidering Puerto Rico's socio-structural reality, we recommend that policymakers, healthcare providers, and leaders across industries to (1) understand how individual health and mortality is embedded within larger social, cultural, structural, and historical contexts, and (2) make concerted efforts to reach out to residents living in disadvantaged community contexts to understand better what they need to successfully age in place in Puerto Rico.
Grocery Store AccessHow do people get to a grocery store in your city?The option to travel quickly to a grocery store varies by location. Explore grocery store access in your neighborhood. Enter your ZIP code, city, or point of interest into the app’s search to see how many stores people there can reach in a 10-minute walk or drive. Interactive charts update as you move around the map. How does grocery access differ with neighboring areas, states, or across the US? This Esri map estimates that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. How does your city compare? Learn more about this map
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
puerto rico - Life Expectancy at Birth, Total for Puerto Rico was 81.69000 Number of Years in January of 2023, according to the United States Federal Reserve. Historically, puerto rico - Life Expectancy at Birth, Total for Puerto Rico reached a record high of 81.69000 in January of 2023 and a record low of 79.42700 in January of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for puerto rico - Life Expectancy at Birth, Total for Puerto Rico - last updated from the United States Federal Reserve on June of 2025.
Note: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES YEAR OF ENTRY - DP02 Universe - Population born outside the United States Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 All respondents born outside the United States were asked for the year in which they came to live in the United States. This includes people born in Puerto Rico, Guam, the Northern Marianas, or the U.S. Virgin Islands; people born abroad of at least one U.S. citizen parent; and the foreign born. For the Puerto Rico Community Survey, respondents born outside Puerto Rico were asked for the year in which they came to live in Puerto Rico.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289
Abstract (en): The Research on Early Life and Aging Trends and Effects (RELATE) study compiles cross-national data that contain information that can be used to examine the effects of early life conditions on older adult health conditions, including heart disease, diabetes, obesity, functionality, mortality, and self-reported health. The complete cross sectional/longitudinal dataset (n=147,278) was compiled from major studies of older adults or households across the world that in most instances are representative of the older adult population either nationally, in major urban centers, or in provinces. It includes over 180 variables with information on demographic and geographic variables along with information about early life conditions and life course events for older adults in low, middle and high income countries. Selected variables were harmonized to facilitate cross national comparisons. In this first public release of the RELATE data, a subset of the data (n=88,273) is being released. The subset includes harmonized data of older adults from the following regions of the world: Africa (Ghana and South Africa), Asia (China, India), Latin America (Costa Rica, major cities in Latin America), and the United States (Puerto Rico, Wisconsin). This first release of the data collection is composed of 19 downloadable parts: Part 1 includes the harmonized cross-national RELATE dataset, which harmonizes data from parts 2 through 19. Specifically, parts 2 through 19 include data from Costa Rica (Part 2), Puerto Rico (Part 3), the United States (Wisconsin) (Part 4), Argentina (Part 5), Barbados (Part 6), Brazil (Part 7), Chile (Part 8), Cuba (Part 9), Mexico (Parts 10 and 15), Uruguay (Part 11), China (Parts 12, 18, and 19), Ghana (Part 13), India (Part 14), Russia (Part 16), and South Africa (Part 17). The Health and Retirement Study (HRS) was also used in the compilation of the larger RELATE data set (HRS) (N=12,527), and these data are now available for public release on the HRS data products page. To access the HRS data that are part of the RELATE data set, please see the collection notes below. The purpose of this study was to compile and harmonize cross-national data from both the developing and developed world to allow for the examination of how early life conditions are related to older adult health and well being. The selection of countries for this study was based on their diversity but also on the availability of comprehensive cross sectional/panel survey data for older adults born in the early to mid 20th century in low, middle and high income countries. These data were then utilized to create the harmonized cross-national RELATE data (Part 1). Specifically, data that are being released in this version of the RELATE study come from the following studies: CHNS (China Health and Nutrition Study) CLHLS (Chinese Longitudinal Healthy Longevity Survey) CRELES (Costa Rican Study of Longevity and Healthy Aging) PREHCO (Puerto Rican Elderly: Health Conditions) SABE (Study of Aging Survey on Health and Well Being of Elders) SAGE (WHO Study on Global Ageing and Adult Health) WLS (Wisconsin Longitudinal Study) Note that the countries selected represent a diverse range in national income levels: Barbados and the United States (including Puerto Rico) represent high income countries; Argentina, Cuba, Uruguay, Chile, Costa Rica, Brazil, Mexico, and Russia represent upper middle income countries; China and India represent lower middle income countries; and Ghana represents a low income country. Users should refer to the technical report that accompanies the RELATE data for more detailed information regarding the study design of the surveys used in the construction of the cross-national data. The Research on Early Life and Aging Trends and Effects (RELATE) data includes an array of variables, including basic demographic variables (age, gender, education), variables relating to early life conditions (height, knee height, rural/urban birthplace, childhood health, childhood socioeconomic status), adult socioeconomic status (income, wealth), adult lifestyle (smoking, drinking, exercising, diet), and health outcomes (self-reported health, chronic conditions, difficulty with functionality, obesity, mortality). Not all countries have the same variables. Please refer to the technical report that is part of the documentation for more detail regarding the variables available across countries. Sample weights are applicable to all countries exc...
The Community Resilience Estimates (CRE) program provides an easily understood metric for how socially vulnerable every neighborhood in the United States is to the impacts of disasters.This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census, CRE, and ACS when using this data.Overview:Community resilience is the capacity of individuals and households within a community to prepare, absorb, respond, and recover from a disaster. Local planners, policy makers, public health officials, emergency managers, and community stakeholders need a variety of estimates to help assess the potential resiliency and vulnerabilities of communities and their constituent populations to help prepare and plan mitigation, recovery, and response strategies. Community Resilience Estimates (CRE) focuses on developing a tool to identify socio-economic vulnerabilities within populations. The 2022 Community Resilience Estimates (CRE) are produced using information on individuals and households from the 2022 American Community Survey (ACS) and the Census Bureau’s Population Estimates Program (PEP). The CRE uses small area modeling techniques that can be used for a broad range of disaster related events (hurricanes, tornadoes, floods, economic shocks, etc.) to identify population concentrations likely to be relatively more impacted by and have greater difficulties overcoming disasters. The end result is a data product which measures vulnerability more accurately and timely. Data:The ACS is a nationally representative survey with data on the characteristics of the U.S. population. The sample is selected from all counties and county-equivalents and has a sample size of about 3.5 million housing units each year. It is the premier source for timely and detailed population and housing information about our nation and its communities. We also use auxiliary data from the PEP, the Census Bureau’s program that produces and publishes estimates of the population living at a given time within a geographic entity in the U.S. and Puerto Rico. We use population data from the PEP by age group, race and ethnicity, and sex. Since the PEP does not go down to the census tract level, the CRE uses the Public Law 94-171 summary files (PL94) and Demographic Housing Characteristics File (DHC) tables from the 2020 Decennial Census to help produce the population base estimates. Once the weighted estimates are tabulated, small area modeling techniques are used to create the estimates for the CRE. Components of Social Vulnerability (SV): Resilience to a disaster is partly determined by the components of social vulnerability exhibited within a community’s population. To measure these components and construct the community resilience estimates, we designed population estimates based on individual- and household-level components of social vulnerability. These components are binary indicators or variables that add up to a maximum of 10 possible components using data from the ACS. The specific ACS-defined measures we use are as follows: Components of Social Vulnerability (SV) for Households (HH) and Individuals (I):SV 1: Income-to-Poverty Ratio (IPR) < 130 percent (HH). SV 2: Single or zero caregiver household - only one or no individuals living in the household who are 18-64 (HH). SV 3: Unit-level crowding with >= 0.75 persons per room (HH). SV 4: Communication barrier defined as either: Limited English-speaking households1 (HH) orNo one in the household over the age of 16 with a high school diploma (HH). SV 5: No one in the household is employed full-time, year-round. The flag is not applied if all residents of the household are aged 65 years or older (HH). SV 6: Disability posing constraint to significant life activity. Persons who report having any one of the six disability types (I): hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. SV 7: No health insurance coverage (I). SV 8: Being aged 65 years or older (I). SV 9: No vehicle access (HH). SV 10: Households without broadband internet access (HH). Each individual is assigned a 0 or 1 for each of the components based upon their individual or household attributes listed above. It is important to note that SV 4 is not double flagged. An individual will be assigned a 1, if either of the characteristics is true for their household. For example, if a household is linguistically isolated and no one over the age of 16 has attained a high school diploma or more education, the household members are only flagged once. The result is an index that produces aggregate-level (tract, county, and state) small area estimates: the CRE. The CRE provide an estimate for the number of people with a specific number of social vulnerabilities. In its current data file layout form, the estimates are categorized into three groups: zero , one-two, or three plus social vulnerability components. Differences with CRE 2021:The number of census tracts have increased from 84,414 in CRE 2021 to 84,415 in CRE 2022. This is due to the boundary changes in Connecticut implemented in 2022 census data products. To accommodate the boundary change, Connecticut also now has nine planning regions instead of eight counties in CRE 2022.To avoid confusion, the modeled rates are now set to equal zero in CRE 2022 for geographic areas with zero population in universe. To improve the population base estimates, CRE 2022 uses more detailed decennial estimates from the 2020 DHC in addition to PL94, whereas CRE 2021 just used PL94 due to availability at the time. See “2022 Community Resilience Estimates: Detailed Technical Documentation” for more information. Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). This dataset does not contain values for Puerto Rico or Island Areas at any level of geography.Further Information:Community Resilience Estimates Program Website https://www.census.gov/programs-surveys/community-resilience-estimates.htmlCommunity Resilience Estimates Technical Documentation https://census.gov/programs-surveys/community-resilience-estimates/technical-documentation.htmlFor Data Questionssehsd.cre@census.gov
https://www.icpsr.umich.edu/web/ICPSR/studies/22520/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/22520/terms
This data collection contains information compiled from the questions asked of all people and every housing unit enumerated in Census 2000. The questions cover sex, age, race, Hispanic or Latino origin, type of living quarters (household/group quarters), household relationship, housing unit vacancy status, and housing unit tenure (owner/renter). With subject content identical to that provided in Summary File 1, the information is presented in 286 tables which are tabulated for every upper and lower chamber state legislative district and smaller geographic units within the districts: counties, county subdivisions, places, consolidated cities, and American Indian Areas/Alaska Native Areas/Hawaiian Home Lands. There is one variable per table cell, plus additional variables with geographic information, which are recorded in 2,080 data files, 40 for each state, the District of Columbia, and Puerto Rico. The collection is supplied in 54 ZIP archives. There is an archive for each state, the District of Columbia, and Puerto Rico, and for the convenience of those who need all of the data, a separate ZIP archive with all 2,080 data files. The codebook and other documentation constitute the last ZIP archive.
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Puerto Rico population pyramid, which represents the Puerto Rico population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Puerto Rico Population by Age. You can refer the same here