38 datasets found
  1. US Gross Rent ACS Statistics

    • kaggle.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    What you get:

    Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

    Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

    Gross Rent & Geographic Statistics:

    • Mean Gross Rent (double)
    • Median Gross Rent (double)
    • Standard Deviation of Gross Rent (double)
    • Number of Samples (double)
    • Square area of land at location (double)
    • Square area of water at location (double)

    Geographic Location:

    • Longitude (double)
    • Latitude (double)
    • State Name (character)
    • State abbreviated (character)
    • State_Code (character)
    • County Name (character)
    • City Name (character)
    • Name of city, town, village or CPD (character)
    • Primary, Defines if the location is a track and block group.
    • Zip Code (character)
    • Area Code (character)

    Abstract

    The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

    License

    Only proper citing is required please see the documentation for details. Have Fun!!!

    Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

    please note: it is my personal number and email is preferred

    Check our data's accuracy: Census Fact Checker

    Access all 325,272 location for Free Database Coupon Code:

    Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

    A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

  2. T

    Vital Signs: Rent Payments – by city (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Feb 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by city (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-city-2022-/wjgr-k4g6
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  3. C

    Data from: Residential Vacancy Rate

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Residential Vacancy Rate [Dataset]. https://data.ccrpc.org/am/dataset/residential-vacancy-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The residential vacancy rate is the percentage of residential units that are unoccupied, or vacant, in a given year. The U.S. Census Bureau defines occupied housing units as “owner-occupied” or “renter-occupied.” Vacant housing units are not classified by tenure in this way, as they are not occupied by an owner or renter.

    The residential vacancy rate serves as an indicator of the condition of the area’s housing market. Low residential vacancy rates indicate that demand for housing is high compared to the housing supply. However, the aggregate residential vacancy rate is lacking in granularity. For example, the housing market for rental units in the area and the market for buying a unit in the same area may be very different, and the aggregate rate will not show those distinct conditions. Furthermore, the vacancy rate may be high, or low, for a variety of reasons. A high vacancy rate may result from a falling population, but it may also result from a recent construction spree that added many units to the total stock.

    The residential vacancy rate in Champaign County appears to have fluctuated between 8% and 14% from 2005 through 2022, reaching a peak near 14% in 2019. In 2023, this rate dropped to about 7%, its lowest value since 2005. However, this rate was calculated using the American Community Survey’s (ACS) estimated number of vacant houses per year, which has year-to-year fluctuations that are largely not statistically significant. Thus, we cannot establish a trend for this data.

    The residential vacancy rate data shown here was calculated using the estimated total housing units and estimated vacant housing units from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Occupancy Status.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (4 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table SB25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  4. A

    The Australian Rental Housing Conditions Dataset

    • dataverse.ada.edu.au
    application/x-sas +5
    Updated Feb 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood; Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood (2022). The Australian Rental Housing Conditions Dataset [Dataset]. http://doi.org/10.26193/IBL7PZ
    Explore at:
    application/x-stata(211836634), application/x-sas(25022), pdf(448547), application/x-spss-sav(22029642), pdf(425356), application/x-stata(211655767), application/x-spss-sav(21917402), application/x-sas-data(153693184), application/x-sas(24936), docx(37473), docx(37425)Available download formats
    Dataset updated
    Feb 3, 2022
    Dataset provided by
    ADA Dataverse
    Authors
    Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood; Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood
    License

    https://dataverse.ada.edu.au/api/datasets/:persistentId/versions/3.5/customlicense?persistentId=doi:10.26193/IBL7PZhttps://dataverse.ada.edu.au/api/datasets/:persistentId/versions/3.5/customlicense?persistentId=doi:10.26193/IBL7PZ

    Area covered
    Australia
    Dataset funded by
    Australian Research Council
    The Australian Housing and Urban Research Institute
    Description

    Rental is Australia’s emerging tenure. Each year the proportion of Australians who rent increases, many of us will rent for life, and for the first time in generations there are now more renters than home owners. Though the rental sector is home to almost one-third of all Australians, researchers and policy-makers know little about conditions in this growing market because there is currently no systematic or reliable data. This project provides researchers and policy stakeholders with an essential database on Australia’s rental housing conditions. This data infrastructure will provide the knowledge base for national and international research and allow better urban, economic and social policy development. Building on The 2016 Australian Housing Conditions Dataset, in 2020 we collected data on the housing conditions of 15,000 rental households, covering all Australian states and territories. The project is funded by the Australian Research Council and The University of Adelaide, in partnership with the University of South Australia, the University of Melbourne, Swinburne University of Technology, Curtin University and Western Sydney University and is led by Professor Emma Baker at the University of Adelaide. The Australian Housing and Urban Research Institute provided funding for the focussed COVID-19 Module.

  5. T

    United States Price to Rent Ratio

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Price to Rent Ratio [Dataset]. https://tradingeconomics.com/united-states/price-to-rent-ratio
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Dec 31, 2024
    Area covered
    United States
    Description

    Price to Rent Ratio in the United States increased to 134.20 in the fourth quarter of 2024 from 133.60 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.

  6. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  7. F

    Homeownership Rate in the United States

    • fred.stlouisfed.org
    json
    Updated Jul 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Homeownership Rate in the United States [Dataset]. https://fred.stlouisfed.org/series/RHORUSQ156N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 28, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q2 2025 about homeownership, housing, rate, and USA.

  8. T

    United States Rent Inflation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). United States Rent Inflation [Dataset]. https://tradingeconomics.com/united-states/rent-inflation
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Nov 14, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1954 - Aug 31, 2025
    Area covered
    United States
    Description

    Rent Inflation in the United States decreased to 3.60 percent in August from 3.70 percent in July of 2025. This dataset includes a chart with historical data for the United States Rent Inflation.

  9. Housing Rent (by US Congress) 2019

    • arc-garc.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Mar 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Housing Rent (by US Congress) 2019 [Dataset]. https://arc-garc.opendata.arcgis.com/maps/GARC::housing-rent-by-us-congress-2019
    Explore at:
    Dataset updated
    Mar 1, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  10. Consumer goods rental, summary statistics, by North American Industry...

    • www150.statcan.gc.ca
    • datasets.ai
    • +1more
    Updated Feb 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2017). Consumer goods rental, summary statistics, by North American Industry Classification System (NAICS), inactive [Dataset]. http://doi.org/10.25318/2110009601-eng
    Explore at:
    Dataset updated
    Feb 6, 2017
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 15 series, with data for years 1997 - 2012 (not all combinations necessarily have data for all years), and was last released on 2015-06-22. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), North American Industry Classification System (NAICS) (3 items: Consumer goods and general rental; Consumer goods rental; General rental centres ...), Summary statistics (5 items: Operating revenue; Operating expenses; Salaries; wages and benefits; Operating profit margin ...).

  11. Insightful & Vast USA Statistics

    • kaggle.com
    Updated May 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    Very Important

    • Check out the new must-see kernel for this dataset Click Here
    • Make Sure to upvote for more datasets and kernel :D

    Overview:

    Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

    • Mortgage-Backed Securities
    • Geographic Business Investment
    • Real Estate Analysis

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

    Statistical Themes:

    Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

    • Second Mortgage: Households with a second mortgage statistics.
    • Home Equity Loan: Households with a Home equity Loan statistics.
    • Debt: Households with any type of debt statistics.
    • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
    • Home Owner Costs: Sum of utilities, property taxes statistics
    • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
    • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
    • High school Graduation: High school graduation statistics.
    • Population Demographics: Population demographic statistics.
    • Age Demographics: Age demographic statistics.
    • Household Income: Total income of people residing in the household.
    • Family Income: Total income of people related to the householder.

    Sources, if you wish to get the data your self :)

    2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

    Access All 325,258 Location of Our Most Complete Database Ever:

    Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

  12. Public Housing Agency

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Public Housing Agency [Dataset]. https://catalog.data.gov/dataset/public-housing-agency-pha-inventory
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The dataset contains current data on low rent and Section 8 units in PHA's administered by HUD. The Section 8 Rental Voucher Program increases affordable housing choices for very low-income households by allowing families to choose privately owned rental housing. Through the Section 8 Rental Voucher Program, the administering housing authority issues a voucher to an income-qualified household, which then finds a unit to rent. If the unit meets the Section 8 quality standards, the PHA then pays the landlord the amount equal to the difference between 30 percent of the tenant's adjusted income (or 10 percent of the gross income or the portion of welfare assistance designated for housing) and the PHA-determined payment standard for the area. The rent must be reasonable compared with similar unassisted units.

  13. Socio-economic, physical, housing, eviction, and risk dataset (SEPHER) ***

    • redivis.com
    application/jsonl +7
    Updated Jan 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). Socio-economic, physical, housing, eviction, and risk dataset (SEPHER) *** [Dataset]. https://redivis.com/datasets/7mkv-4r0gdseef
    Explore at:
    parquet, spss, arrow, csv, avro, sas, stata, application/jsonlAvailable download formats
    Dataset updated
    Jan 16, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Time period covered
    Jan 1, 2000 - Dec 31, 2018
    Description

    Abstract

    The purpose of the SEPHER data set is to allow for testing, assessing and generating new analysis and metrics that can address inequalities and climate injustice. The data set was created by Tedesco, M., C. Hultquist, S. E. Char, C. Constantinides, T. Galjanic, and A. D. Sinha.

    Methodology

    SEPHER draws upon four major source datasets: CDC Social Vulnerability Index, FEMA National Risk Index, Home Mortgage Disclosure Act, and Evictions datasets. The data from these source datasets have been merged, cleaned, and standardized and all of the variables documented in the data dictionary.

    CDC Social Vulnerability Index

    CDC Social Vulnerability Index (SVI) dataset is a dataset prepared for the Centers for Disease Control and Prevention for the purpose of assessing the degree of social vulnerability of American communities to natural hazards and anthropogenic events. It contains data on 15 social factors taken or derived from Census reports as well as rankings of each tract based on these individual factors, groups of factors corresponding to four related themes (Socioeconomic, Household Composition & Disability, Minority Status & Language, and Housing Type & Transportation) and overall. The data is available for the years 2000, 2010, 2014, 2016, and 2018.

    FEMA National Risk Index

    The National Risk Index (NRI) dataset compiled by the Federal Emergency Management Agency (FEMA) consists of historic natural disaster data from across the United States at a tract-level. The dataset includes information about 18 natural disasters including earthquakes, tsunamis, wildfires, volcanic activity and many others. Each disaster is detailed out in terms of its frequency, historic impact, potential exposure, expected annual loss and associated risk. The dataset also includes some summary variables for each tract including the total expected loss in terms of building loss, human loss and agricultural loss, the population of the tract, and the area covered by the tract. It finally includes a few more features to characterize the population such as social vulnerability rating and community resilience.

    Home Mortgage Disclosure Act

    The Home Mortgage Disclosure Act (HMDA) dataset contains loan-level data for home mortgages including information on applications, denials, approvals, and institution purchases. It is managed and expanded annually by the Consumer Financial Protection Bureau based on the data collected from financial institutions. The dataset is used by public officials to make decisions and policies, uncover lending patterns and discrimination among mortgage applicants, and investigate if lenders are serving the housing needs of the communities. It covers the period from 2007 to 2017.

    Evictions

    The Evictions dataset is compiled and managed by the Eviction Lab at Princeton University and consists of court records related to eviction cases in the United States between 2000 and 2016. Its purpose is to estimate the prevalence of court-ordered evictions and compare eviction rates among states, counties, cities, and neighborhoods. Besides information on eviction filings and judgments, the dataset includes socioeconomic and real estate data for each tract including race/ethnic origin, household income, poverty rate, property value, median gross rent, rent burden, and others.

  14. F

    Consumer Price Index for All Urban Consumers: Rent of Primary Residence in...

    • fred.stlouisfed.org
    json
    Updated Sep 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average [Dataset]. https://fred.stlouisfed.org/series/CUUR0000SEHA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average (CUUR0000SEHA) from Dec 1914 to Aug 2025 about primary, rent, urban, consumer, CPI, inflation, price index, indexes, price, and USA.

  15. Fair Market Rents

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Sep 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2019). Fair Market Rents [Dataset]. https://hub.arcgis.com/maps/fedmaps::fair-market-rents
    Explore at:
    Dataset updated
    Sep 26, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Fair Market RentsThis National Geospatial Data Asset (NGDA) dataset, shared as a Department of Housing and Urban Development (HUD) feature layer, displays fair market rents (FMR) in the United States. According to HUD, "Fair Market Rents (FMRs) represent the estimated amount (base rent + essential utilities) that a property in a given area typically rents for. The data are primarily used to determine payment standard amounts for the Housing Choice Voucher program. However, FMRs are also used to determine initial renewal rents for expiring project-based Section 8 contracts, determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), rent ceilings for rental units in both the HOME Investment Partnerships program and the Emergency Solution Grants (ESG) program, calculate of maximum award amounts for Continuum of Care recipients and the maximum amount of rent a recipient may pay for property leased with Continuum of Care funds, and calculate flat rent amounts in Public Housing Units."Milwaukee-Waukesha-West Allis, WI Metropolitan Statistical Area (MSA)Data currency: current Federal service (Fair Market Rents)NGDAID: 122 (Fair Market Rents (Fair Market Rents For The Section 8 Housing Assistance Payments Program) - National Geospatial Data Asset (NGDA))For more information, please visit: Fair Market RentsSupport documentation: Fair Market Rents (FMRs)For feedback, please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets

  16. 2024 American Community Survey: B25067 | Aggregate Gross Rent (Dollars) by...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B25067 | Aggregate Gross Rent (Dollars) by Meals Included in Rent (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B25067?text=financial+characteristics&g=050XX00US53041
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Aggregate Gross Rent (Dollars) by Meals Included in Rent.Table ID.ACSDT1Y2024.B25067.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities,...

  17. d

    TRAK Data - Full US Real Estate Data - Recent Home Buyers, Home Loan...

    • datarade.ai
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRAK Data (2022). TRAK Data - Full US Real Estate Data - Recent Home Buyers, Home Loan Details, Home Attributes, Real Estate Investors, and Much More. [Dataset]. https://datarade.ai/data-products/trak-data-full-us-real-estate-dataset-including-recent-home-trak-data
    Explore at:
    .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset authored and provided by
    TRAK Data
    Area covered
    United States of America
    Description

    Nothing is more personal than home. In order to form a meaningful connection with a relevant audience, real estate and home services brands turn to data to fuel a wide variety of strategies.

    TRAK's US Real Estate dataset includes enough rich home and real estate focused variables to power highly customizable analytics and direct marketing strategies. Our data is deep and wide, covering everything from financing information to the number of rooms in a home.

    There are also the table stakes variables useful for a variety of industries like new movers, homeowners vs. renters, and in-market for a home purchase (premovers).

    We work closely with marketers and data teams to recommend an ideal volume and depth of attributes to empower them to crush their goals. Whether it's limiting the geographic area to your market territories, or removing variables that won't have an impact on your business, we right size the data for your organization's needs. At a high level, key categories in our data set includes:

    ✔ Home Financing Details ✔ Home Ownership vs Renters ✔ In-Market for a Home ✔ Property Type ✔ Home Attributes ✔ Real Estate Investing ✔ New Mover

  18. c

    DOF Condominium Comparable Rental Income in NYC

    • s.cnmilf.com
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOF Condominium Comparable Rental Income in NYC [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/dof-condominium-comparable-rental-income-in-nyc
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    The Department of Finance (DOF) is required by NY State law to value condominiums or cooperatives as if they were residential rental apartment buildings. DOF uses income information from rental properties similar in physical features and _location to the condominiums or cooperatives. DOF applies this income data to the condominium or cooperative to determine its value in the same way DOF values rental apartment buildings. This report includes information at a condominium suffix level which represents a subdivision of the condominium since DOF values condominiums at a suffix level. A condominium may have more than one suffix. This data set contains the reports from 2012-2018.

  19. T

    United States Total Housing Inventory

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Total Housing Inventory [Dataset]. https://tradingeconomics.com/united-states/total-housing-inventory
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1982 - Aug 31, 2025
    Area covered
    United States
    Description

    Total Housing Inventory in the United States decreased to 1530 Thousands in August from 1550 Thousands in July of 2025. This dataset includes a chart with historical data for the United States Total Housing Inventory.

  20. 2024 American Community Survey: C25056 | Contract Rent (ACS 1-Year Estimates...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: C25056 | Contract Rent (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.C25056?q=Bettez+Contracting
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Contract Rent.Table ID.ACSDT1Y2024.C25056.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units a...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics
Organization logo

US Gross Rent ACS Statistics

+40,000 Samples: Real Estate Application (Mean, Median, Standard Deviation)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 23, 2017
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Golden Oak Research Group
Area covered
United States
Description

What you get:

Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

Gross Rent & Geographic Statistics:

  • Mean Gross Rent (double)
  • Median Gross Rent (double)
  • Standard Deviation of Gross Rent (double)
  • Number of Samples (double)
  • Square area of land at location (double)
  • Square area of water at location (double)

Geographic Location:

  • Longitude (double)
  • Latitude (double)
  • State Name (character)
  • State abbreviated (character)
  • State_Code (character)
  • County Name (character)
  • City Name (character)
  • Name of city, town, village or CPD (character)
  • Primary, Defines if the location is a track and block group.
  • Zip Code (character)
  • Area Code (character)

Abstract

The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

License

Only proper citing is required please see the documentation for details. Have Fun!!!

Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

please note: it is my personal number and email is preferred

Check our data's accuracy: Census Fact Checker

Access all 325,272 location for Free Database Coupon Code:

Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

Search
Clear search
Close search
Google apps
Main menu