Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.
Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings
Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela
Follow data.kapsarc.org for timely data to advance energy economics research.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is extracted from https://en.wikipedia.org/wiki/List_of_countries_by_GDP_-PPP-_per_capita. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We provide the data used for this research in both Excel (one file with one matrix per sheet, 'Allmatrices.xlsx'), and CSV (one file per matrix).
Patent applications (Patent_applications.csv) Patent applications from residents and no residents per million inhabitants. Data obtained from the World Development Indicators database (World Bank 2020). Normalization by the number of inhabitants was made by the authors.
High-tech exports (High-tech_exports.csv) The proportion of exports of high-level technology manufactures from total exports by technology intensity, obtained from the Trade Structure by Partner, Product or Service-Category database (Lall, 2000; UNCTAD, 2019)
Expenditure on education (Expenditure_on_education.csv) Per capita government expenditure on education, total (2010 US$). The data was obtained from the government expenditure on education (total % of GDP), GDP (constant 2010 US$), and population indicators of the World Development Indicators database (World Bank 2020). Normalization by the number of inhabitants was made by the authors.
Scientific publications (Scientific_publications.csv) Scientific and technical journal articles per million inhabitants. The data were obtained from the scientific and technical journal articles and population indicators of the World Development Indicators database (World Bank 2020). Normalization by the number of inhabitants was made by the authors.
Expenditure on R&D (Expenditure_on_R&D.csv) Expenditure on research and development. Data obtained from the research and development expenditure (% of GDP), GDP (constant 2010 US$), and population indicators of the World Development Indicators database (World Bank 2020). Normalization by the number of inhabitants was made by the authors.
Two centuries of GDP (GDP_two_centuries.csv) GDP per capita that accounts for inflation. Data obtained from the Maddison Project Database, version 2018 (Inklaar et al. 2018), and available from the Open Numbers community (open-numbers.github.io).
Inklaar, R., de Jong, H., Bolt, J., & van Zanden, J. (2018). Rebasing “Maddison”: new income comparisons and the shape of long-run economic development (GD-174; GGDC Research Memorandum). https://www.rug.nl/research/portal/files/53088705/gd174.pdf
Lall, S. (2000). The Technological Structure and Performance of Developing Country Manufactured Exports, 1985‐98. Oxford Development Studies, 28(3), 337–369. https://doi.org/10.1080/713688318
Unctad. 2019. “Trade Structure by Partner, Product or Service-Category.” 2019. https://unctadstat.unctad.org/EN/.
World Bank. (2020). World Development Indicators. https://databank.worldbank.org/source/world-development-indicators
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘GapMinder - Income Inequality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/psterk/income-inequality on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.
The data is for years 2006 - 2016
This investigation can be considered a starting point for complex questions such as:
This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.
*The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.
The dataset contains data from the following GapMinder datasets:
"This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:
The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888
GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/
Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.
refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS
Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.
Thanks to gapminder.org for organizing the above datasets.
Below are some research questions associated with the data and some initial conclusions:
Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?
Answer:
Yes, it is getting better, improving from 38.7 to 37.3
On a continent basis, all were either declining or mostly flat, except for Africa.
Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?
Answer:
Lowest: Slovenia, Ukraine, Czech Republic, Norway, Slovak Republic, Denmark, Kazakhstan, Finland, Belarus,Kyrgyz Republic
Highest: Colombia, Lesotho, Honduras, Bolivia, Central African Republic, Zambia, Suriname, Namibia, Botswana, South Africa
Research Question 3 Is a higher tax revenue as a % of GDP associated with less income inequality?
Answer: No
Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?
Answer: No, but weak negative correlation.
Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?
Answer: No
Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?
Answer: No, but weak negative correlation.
The above results suggest that there are other drivers for the overall reduction in income inequality. Futher analysis of additional factors should be undertaken.
--- Original source retains full ownership of the source dataset ---
The "Global Country Rankings Dataset" is a comprehensive collection of metrics and indicators that ranks countries worldwide based on their socioeconomic performance. This datasets are providing valuable insights into the relative standings of nations in terms of key factors such as GDP per capita, economic growth, and various other relevant criteria.
Researchers, analysts, and policymakers can leverage this dataset to gain a deeper understanding of the global economic landscape and track the progress of countries over time. The dataset covers a wide range of metrics, including but not limited to:
Economic growth: the rate of change of real GDP- Country rankings: The average for 2021 based on 184 countries was 5.26 percent.The highest value was in the Maldives: 41.75 percent and the lowest value was in Afghanistan: -20.74 percent. The indicator is available from 1961 to 2021.
GDP per capita, Purchasing Power Parity - Country rankings: The average for 2021 based on 182 countries was 21283.21 U.S. dollars.The highest value was in Luxembourg: 115683.49 U.S. dollars and the lowest value was in Burundi: 705.03 U.S. dollars. The indicator is available from 1990 to 2021.
GDP per capita, current U.S. dollars - Country rankings: The average for 2021 based on 186 countries was 17937.03 U.S. dollars.The highest value was in Monaco: 234315.45 U.S. dollars and the lowest value was in Burundi: 221.48 U.S. dollars. The indicator is available from 1960 to 2021.
GDP per capita, constant 2010 dollars - Country rankings: The average for 2021 based on 184 countries was 15605.8 U.S. dollars.The highest value was in Monaco: 204190.16 U.S. dollars and the lowest value was in Burundi: 261.02 U.S. dollars. The indicator is available from 1960 to 2021.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is extracted from https://en.wikipedia.org/wiki/List_of_OECD_regions_by_GDP_-PPP-_per_capita. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🏦 US Retail Sales Per Capita by Store Type’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/us-retail-sales-per-capita-by-store-type-2000-20e on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I have added a column on the right that shows the compound annual growth rate (CGR) of per capita spending from 2000 to 2015.
source:
This dataset was created by Gary Hoover and contains around 0 samples along with Unnamed: 15, Unnamed: 9, technical information and other features such as: - Unnamed: 18 - Unnamed: 12 - and more.
- Analyze Unnamed: 4 in relation to Unnamed: 10
- Study the influence of Unnamed: 14 on Unnamed: 1
- More datasets
If you use this dataset in your research, please credit Gary Hoover
--- Original source retains full ownership of the source dataset ---
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/LR6CQChttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/LR6CQC
Food policy research plays a crucial role in guiding the agricultural development of countries. To achieve food security goals, countries need to strengthen their capacity to conduct food policy research. Strong local policy research institutions help in shaping an evidence-based policy-making process. Measuring national capacity for food policy research is important for identifying capacity gaps in food policy research and guiding allocation of resources to fill those gaps. Food policy research capacity is defined as any socioeconomic or policy-related research capacity in the area of food, agriculture, or natural resources. To measure this capacity, the International Food Policy Research Institute (IFPRI) developed a set of indicators of the quantity and quality of policy research at the country level. IFPRI created a database for food policy research capacity in 2010, and has continued to expand and refine it. The data presented are currently collected for 33 countries; data for Myanmar were added in 2017. A consistent methodology is followed to enable comparison of values across time and countries. The database was most recently updated with numbers for 2017. “Analysts/researchers” is a head count of professionals employed at local organizations whose work involves food policy research or analysis. To introduce some uniformity, IFPRI also presents a modified quantification of the head count: "full-time equivalent analysts/researchers with PhD equivalent." To obtain an indicator of per capita food policy research capacity, this research capacity is then divided by the country’s rural population ("full-time equivalent researchers per million rural residents"). This helps to illustrate the impact of local food policy research in a country. This indicator was last updated in 2015. The quality of a country’s food policy research capacity is estimated by tallying the number of relevant international publications in peer-reviewed journals over a five-year period. IFPRI views this as a reflection of the local enabling environment for food policy research. This indicator allows for comparison across countries, as it ensures an internationally accepted standard of quality for publications. The final indicator ("publications per full-time equivalent researcher") is derived by dividing the number of international publications by the number of full-time equivalent researchers with a PhD, providing a measure of productivity.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data collected aim to test whether English proficiency levels in a country are positively associated with higher democratic values in that country. English proficiency is sourced from statistics by Education First’s "EF English Proficiency Index" which covers countries' scores for the calendar year 2022 and 2021. The EF English Proficiency Index ranks 111 countries in five different categories based on their English proficiency scores that were calculated from the test results of 2.1 million adults. While democratic values are operationalized through the liberal democracy index from the V-Dem Institute annual report for 2022 and 2021. Additionally, the data is utilized to test whether English language media consumption acts as a mediating variable between English proficiency and democracy levels in a country, while also looking at other possible regression variables. In order to conduct the linear regression analyses for the dats, the software that was utilized for this research was Microsoft Excel.The raw data set consists of 90 nation states in two years from 2022 and 2021. The raw data is utilized for two separate data sets the first of which is democracy indicators which has the regression variables of EPI, HDI, and GDP. For this table set there is a total of 360 data entries. HDI scores are a statistical summary measure that is developed by the United Nations Development Programme (UNDP) which measures the levels of human development in 190 countries. The data for nominal gross domestic product scores (GDP) are sourced from the World Bank. Having strong regression variables that have been proven to have a positive link with democracy in the data analysis such as GDP and HDI, would allow the regression analysis to identify whether there is a true relationship between English proficiency and democracy levels in a country. While the second data set has a total of 720 data entries and aims to identify English proficiency indicators the data set has 7 various regression variables which include, LDI scores, Years of Mandatory English Education, Heads of States Publicly speaking English, GDP PPP (2021USD), Common Wealth, BBC web traffic and CNN web traffic. The data for years of mandatory English education is sourced from research at the University of Winnipeg and is coded in the data set based on the number of years a country has English as a mandatory subject. The range of this data is from 0 to 13 years of English being mandatory. It is important to note that this data only concerns public schools and does not extend to the private school systems in each country. The data for heads of state publicly speaking English was done through a video data analysis of all heads of state. The data was only used for heads of state who had been in their position for at least a year to ensure the accuracy of the data collected; with a year in power, for heads of state that had not been in their position for a year, data was taken from the previous head of state. This data only takes into account speeches and interviews that were conducted during their incumbency. The data for each country’s GDP PPP scores are sourced from the World Bank, which was last updated for a majority of the countries in 2021 and is tied to the US dollar. Data for the commonwealth will only include members of the commonwealth that have been historically colonized by the United Kingdom. Any country that falls under that category will be coded as 1 and any country that does not will be coded as 0. For BBC and CNN web traffic that data is sourced by using tools in Semrush which provide a rough estimate of how much web traffic each news site generates in each country. Which will be utilized to identify the average number of web traffic for BBC News and CNN World News for both the 2021 and 2022 calendar. The traffic for each country will also be measured per capita, per 10 thousand people to ensure that the population density of a country does not influence the results. The population of each country for both 2021 and 2022 is sourced from the United Nations revision of World Population Prospects of both 2021 and 2022 respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in Switzerland was last recorded at 89783.13 US dollars in 2024. The GDP per Capita in Switzerland is equivalent to 711 percent of the world's average. This dataset provides the latest reported value for - Switzerland GDP per capita - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Context
Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.
Content
This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:
Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)
Acknowledgements
The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.
Inspiration
How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.
Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development
Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Changes in land use and land cover are important in global climate change, but the many uncertainties in historical estimates seriously hamper climate modelling. We collected new data on estimated per capita land use over the last two millennia, using new data sources from the Humanities. In general, and in agreement with literature, we found that per capita land use indeed has not been constant in the past, but differ per region and over time. Land use in the distant past was mostly less than 1 ha/cap. However, the recently colonised regions show much higher values and have experienced a much higher per capita land use for the recent past. Most known trajectories follow a concave or bell-shaped curve towards the present.
The Global Earthquake Total Economic Loss Risk Deciles is a 2.5 minute grid of global earthquake total economic loss risks. A process of spatially allocating Gross Domestic Product (GDP) based upon the Sachs et al. (2003) methodology is utilized. First the proportional contributions of subnational Units to their respective national GDP are determined using sources of various origin. The contribution rates are then applied to published World Bank Development Indicators to determine a GDP value for the subnational Unit. Once the national GDP has been spatially stratified into the smallest administrative Units available, GDP values for grid cells are derived using Gridded Population of the World, Version 3 (GPWv3) data population distributions. A per capita contribution value is determined within each subnational Unit, and then this value is multiplied by the population per grid cell. Once a GDP value has been determined on a per grid cell basis, then the regionally variable loss rate as derived from the historical records of EM-DAT is used to determine the total economic loss risks posed to a grid cell by earthquake hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10 with increasing risk) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘👣 Ecological Footprint per capita ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/nfa-2016-editione on 13 February 2022.
--- Dataset description provided by original source is as follows ---
National Footprint Accounts 2016 Edition
Dataset provides Ecological Footprint per capita data for years 1961-2012 in global hectares (gha).
Ecological Footprint is a measure of how much area of biologically productive land and water an individual, population, or activity requires to produce all the resources it consumes and to absorb the waste it generates, using prevailing technology and resource management practices. The Ecological Footprint is measured in global hectares. Because trade is global, an individual or country's Footprint includes land or sea from all over the world. Without further specification, Ecological Footprint generally refers to the Ecological Footprint of consumption. Ecological Footprint is often referred to in short form as Footprint.
This dataset was created by Global Footprint Network and contains around 8000 samples along with Quality Score, Year, technical information and other features such as: - Country Code - Ef Percap - and more.
- Analyze Country in relation to Quality Score
- Study the influence of Year on Country Code
- More datasets
If you use this dataset in your research, please credit Global Footprint Network
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Global Volcano Total Economic Loss Risk Deciles is a 2.5 minute grid of global volcano total economic loss risks. First, subnational distributions of Gross Domestic Product (GDP) are computed using a two-fold process. Where applicable, the proportional contribution of subnational Units are determined following the methodology of Sachs et al. (2003) and these proportions are used against World Bank Development Indicators to determine a GDP value for the subnational Unit. Once a national GDP has been spatially stratified into the smallest administrative Units available, it is further distributed based upon Gridded Population of the World, Version 3 (GPWv3) population distributions. A per capita contribution value is determined for each Unit, and this value is multiplied by the population per grid cell. Once the GDP has been determined on a per grid cell basis, then the spatially variable loss rate as derived from EM-DAT historical records is used to determine the total economic loss posed to a grid cell by volcano hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is extracted from https://en.wikipedia.org/wiki/List_of_countries_by_milk_consumption_per_capita. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and project description accompanies the study "Reassessing Latin America’s Research Capacity: A Regional Comparison Using UNESCO Indicators." The study presents a novel AI-augmented, open-source research workflow developed at a bankrupt public university in Puerto Rico. It documents how a lone faculty member, using tools such as ChatGPT, Google Colab, and public data from UNESCO and the World Bank, built a high-productivity research pipeline that generated 40 unique manuscripts and 77 submissions across 53 journals within just 55 days.
The project combines autoethnographic artifact analysis with regional slope regressions of UNESCO R&D and education data, focusing on five indicators:
GERD (% of GDP)
Government Education Spending (% of total budget)
Tertiary Enrollment (Gross HE enrollment rate)
Researchers per Capita (Public Sector)
Researchers per Capita (Private Sector)
The analysis highlights statistically significant growth in Latin America's research workforce—particularly in the private sector—despite stagnant investment trends, challenging assumptions that elite R1 infrastructure is necessary for research productivity. Findings suggest the emergence of a “Post-R1 Researcher” archetype, capable of scholarly contribution through digital improvisation, methodological agility, and cognitive empowerment via AI tools.
The full manuscript includes:
Background on academic precarity in Latin America
Methodology for bottom-up digital workflow construction and UNESCO slope analysis
Detailed regression slope results across six global regions (Africa, Asia, Europe, Latin America, North America, Other)
Theoretical implications for institutional theory, capacity-building, and reverse innovation
Key empirical finding: Latin America shows strong growth in researcher density, particularly in private-sector positions, without corresponding increases in government R&D or education spending. Meanwhile, North America shows significant decline in public investment metrics, potentially due to political retrenchment. These trends point to a decentralizing model of knowledge production increasingly shaped by open infrastructure and generative AI rather than institutional abundance.
This Zenodo archive contains the full dataset and code needed to replicate the study’s quantitative findings, in accordance with FAIR principles (Findable, Accessible, Interoperable, Reusable).
Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.
Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings
Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela
Follow data.kapsarc.org for timely data to advance energy economics research.